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SECTION 1.

TIME SERIES ANALYSIS

1.1 INTRODUCTION

Times series analysis could be described as a branch of applied stochastic
processes. We start with an indexed family of random variables

{Xt : t ∈ T}

where t is the index, here taken to be time (but it could be space). T is
called the index set. We have a state space of values of X.

In addition X could be univariate ormultivariate. We shall concentrate
on discrete time. Samples are taken at equal intervals. We wish to use time
series analysis to characterize time series and understand structure.
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Possibilities

State (possible values of X) Time Notation

Continuous Continuous X(t)

Continuous Discrete Xt

Discrete Continuous

Discrete Discrete
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Examples: Figures 1—4, in all cases points are joined for clarity.

1. wind speed in a certain direction at a location, measured every 0.025s.

2. monthly average measurements of the flow of water in the Willamette
River at Salem, Oregon.

3. the daily record of the change in average daily frequency that tells us
how well an atomic clock keeps time on a day to day basis.

4. the change in the level of ambient noise in the ocean from one second
to the next.

5. part of the Epstein-Barr Virus DNA sequence (the entire sequence
consists of approximately 172,000 base pairs).

6. daily US Dollar/Sterling exchange rate and the corresponding returns
from 1981 to 1985.
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The visual appearances of these datasets are quite different. For example,
consider the wind speed and atomic clock data,

• Wind speed: Adjacent points are close in value

• Atomic clock: Positive values often followed by negative values

For the numerical data, we can illustrate this using lag 1 scatter plots.
Realizations of the series denoted x1, . . . , xN . So plot xt versus xt+1 as t
varies from 1 to N − 1. From these scatter plots we note the following:

• for the wind speed and US dollar series, the values are positively
correlated.

• Willamette river data is similar, but points are more spread out.

• for the atomic clock data, the values are negatively correlated.

• for the ocean noise data and the US dollar returns series there is no
clear clustering tendency.
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We could similarly create lag k scatter plots by plotting xt versus xt+k,
but they are unwieldy. Suppose we make the assumption that a linear
relationship holds approximately between xt+k and xt for all k, i.e.,

xt+k = αk + βkxt + εt+k

where εt+k is an random error term.

We can use as a summary statistic a measure of the strength of the linear
relationship between two variables {yt} and {zt} say, namely the Pearson
product moment correlation coefficient

ρ̂ =

∑
(yt − ȳ)(zt − z̄)

√∑
(yt − ȳ)2

∑
(zt − z̄)2

where ȳ and z̄ are the sample means.
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Hence if yt = xt+k and zt = xt we are led to the lag k sample autocorrela-
tion for a time series:

ρ̂k =

N−k∑

t=1
(xt+k − x̄)(xt − x̄)

N∑

t=1
(xt − x̄)2

with ρ̂0 = 1.

The sequence {ρ̂k} is called the sample autocorrelation sequence (sam-
ple acs) for the time series. The sample acs for each of our time series are
given in Figs. 6 and 7. Note that for the Willamette river data xt and xt+6
are negatively correlated, while xt and xt+12 are positively correlated
(consistent with the river flow varying with a period of roughly 12 months).
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The series x1, . . . , xN can be regarded as a realization of the correspond-
ing random variables X1, . . . , XN , ρ̂k is an estimate of a corresponding
population quantity called the lag k theoretical autocorrelation, defined as

ρk =
E [(Xt − µ)(Xt+k − µ)]

σ2

where E [] is the expectation operator,

µ = E [Xt]

is the population mean, and

σ2 = E
[
(Xt − µ)2

]

is the corresponding population variance.

Note that ρk, µ and σ2 do not depend on t
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1.2 Real-Valued discrete time processes

Denote the process by {Xt}. For fixed t, Xt is a random variable (r.v.),
and hence there is an associated cumulative distribution function (cdf):

Ft(a) = P (Xt ≤ a),

and

E [Xt] =

∫ ∞

−∞

x dFt(x) ≡ µt V ar [Xt] =

∫ ∞

−∞

(x− µt)
2 dFt(x).

But we are interested in the relationships between the various r.v.s that
form the process. For example, for any t1 and t2 ∈ T ,

Ft1,t2(a1, a2) = P (Xt1 ≤ a1, Xt2 ≤ a2)

gives the bivariate cdf. More generally for any t1, t2, . . . , tn ∈ T ,

Ft1,t2,... ,tn(a1, a2, . . . , an) = P (Xt1 ≤ a1, . . . ,Xtn ≤ an)
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1.3 STATIONARITY

We consider the subclass of stationary processes.

COMPLETE/STRONG/STRICT stationarity
{Xt} is said to be completely stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that

t1 + τ, t2 + τ , . . . , tn + τ ∈ T

are also contained in the index set, the joint cdf of {Xt1 ,Xt2 , . . . ,Xtn} is
the same as that of {Xt1+τ ,Xt2+τ , . . . ,Xtn+τ} i.e.,

Ft1,t2,... ,tn(a1, a2, . . . , an) = Ft1+τ,t2+τ,... ,tn+τ (a1, a2, . . . , an),

so that the probabilistic structure of a completely stationary process is
invariant under a shift in time.
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SECOND-ORDER/WEAK/COVARIANCE stationarity
{Xt} is said to be second-order stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that t1+ τ, t2 + τ , . . . , tn + τ ∈ T are also contained in
the index set, all the joint moments of orders 1 and 2 of {Xt1 ,Xt2 , . . . ,Xtn}
exist and are finite. Most importantly, these moments are identical to the
corresponding joint moments of {Xt1+τ ,Xt2+τ , . . . ,Xtn+τ}. Hence,

E [Xt] ≡ µ V ar [Xt] ≡ σ2 (= E
[
X2
t

]
− µ2),

are constants independent of t. If we let τ = −t1,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [X0Xt2−t1 ] ,

and with τ = −t2,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [Xt1−t2X0] .
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Hence, E{Xt1Xt2} is a function of the absolute difference |t2 − t1| only,
similarly, for the covariance between Xt1 & Xt2 :

Cov [Xt1 ,Xt2 ] = E [(Xt1 − µ)(Xt2 − µ)]

= E [Xt1Xt2 ]− µ2.

For a discrete time second-order stationary process {Xt} we define the
autocovariance sequence (acvs) by

sτ ≡ Cov [Xt, Xt+τ ]

= Cov [X0,Xτ ] .

12



Statistical Analysis and Modelling Week 4 Spring 2004

NOTES:

1. τ is called the lag.

2. s0 = σ2 and s−τ = sτ .

3. The autocorrelation sequence (acs) is given by

ρτ =
sτ
s0

=
Cov [Xt,Xt+τ ]

σ2
.

4. Since ρτ is a correlation coefficient, |sτ | ≤ s0.

5. The sequence {sτ} is positive semidefinite, i.e., for all n ≥ 1, for any
t1, t2, . . . , tn contained in the index set, and for any set of nonzero
real numbers a1, a2, . . . , an

n∑

j=1

n∑

k=1

stj−tkajak ≥ 0.
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To see this, let

a = (a1, a2, . . . , an)
T, V = (Xt1 , Xt2 , . . . , Xtn)

T

and let Σ be the variance-covariance matrix of V. Its j, k-th element
is given by

stj−tk = E
[
(Xtj − µ)(Xtk − µ)

]

Define the r.v.

w =
n∑

j=1

ajXtj = aTV,

Then

0 ≤ V ar [w] = V ar
[
aTV

]
= aTV ar [V]a = aTΣa =

n∑

j=1

n∑

k=1

stj−tkajak.
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6. The variance-covariance matrix of equispacedX’s, (X1,X2, . . . ,XN)
T

has the form





s0 s1 . . . sN−2 sN−1
s1 s0 . . . sN−3 sN−2
...

. . .

sN−2 sN−3 . . . s0 s1
sN−1 sN−2 . . . s1 s0






which is known as a symmetric Toeplitz matrix — all elements on a
diagonal are the same.

7. Note the above matrix has only N unique elements, s0, s1, . . . , sN−1.
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8. A stochastic process {Xt} is called Gaussian if, for all n ≥ 1 and
for any t1, t2, . . . , tn contained in the index set, the joint cdf of
Xt1 , Xt2 , . . . , Xtn is multivariate Gaussian.

• 2nd-order stationary Gaussian ⇒ complete stationarity

— follows as the multivariate Normal distribution is completely
characterized by 1st and 2nd moments

— not true in general.

• Complete stationarity ⇒ 2nd-order stationary in general.
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1.4 DISCRETE STATIONARYPROCESSES

Example 1.4.1 White noise process
Also known as a purely random process. Let {Xt} be a sequence of
uncorrelated r.v.s such that

E [Xt] = µ V ar [Xt] = σ2 ∀t

and

sτ =

{
σ2 τ = 0
0 τ = 0

or ρτ =

{
1 τ = 0
0 τ = 0

forms a basic building block in time series analysis. Very different
realizations of white noise can be obtained for different distributions of
{Xt}. Examples are given in Figures 8 and 9 for processes with (a)
Gaussian, (b) exponential, (c) uniform and (d) truncated Cauchy
distributions.
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Example 1.4.2 q-th order moving average process MA(q)
Xt can be expressed in the form

Xt = µ− θ0,qǫt − θ1,qǫt−1 − . . .− θq,qǫt−q = µ−

q∑

j=0

θj,qǫt−j,

where µ and θj,q’s are constants (θ0,q ≡ −1, θq,q = 0), and {ǫt} is a
zero-mean white noise process with variance σ2ǫ .
We assume E [Xt] = µ = 0. Then

Cov [Xt,Xt+τ ] = E{XtXt+τ}

Recall: Cov(X,Y ) = E{(X −E{X})(Y −E{Y })}. Since
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E{ǫtǫt+τ} = 0 ∀ τ = 0 we have for τ ≥ 0.

Cov [Xt, Xt+τ ] =

q∑

j=0

q∑

k=0

θj,qθk,qE{ǫt−jǫt+τ−k}

= σ2ǫ

q−τ∑

j=0

θj,qθj+τ,q (k = j + τ)

≡ sτ ,

which does not depend on t. Since sτ = s−τ , {Xt} is a stationary process
with acvs given by

sτ =





σ2ǫ

q−|τ|∑

j=0
θj,qθj+|τ|,q |τ | ≤ q

0 |τ | > q

N.B. No restrictions were placed on the θj,q’s to ensure stationarity.
(Though obviously, |θj,q| <∞ ∀ j).
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Examples (Figures 10 and 11)

Xt = ǫt − θ1,1ǫt−1 MA(1)

acvs:

sτ = σ2ǫ

1−|τ |∑

j=0

θj,1θj+|τ |,1 |τ | ≤ 1,

so,

s0 = σ2ǫ(θ0,1θ0,1 + θ1,1θ1,1) = σ2ǫ(1 + θ21,1);

and,

s1 = σ2ǫθ0,1θ1,1 = −σ2ǫθ1,1.
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acs:

ρτ =
sτ
s0

: ρ0 = 1.0 ρ1 =
−θ1,1

1 + θ21,1

For θ1,1 = 1.0, σ2ǫ = 1.0, we have,

s0 = 2.0, s1 = −1.0, s2, s3, . . . = 0.0,

giving,

ρ0 = 1.0, ρ1 = −0.5, ρ2, ρ3, . . . = 0.0.

For θ1,1 = −1.0, σ
2
ǫ = 1.0, we have,

s0 = 2.0, s1 = 1.0, s2, s3, . . . = 0.0,

giving,

ρ0 = 1.0, ρ1 = 0.5, ρ2, ρ3, . . . = 0.0.
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Note: if we replace θ1,1 by θ−11,1 the model becomes

Xt = ǫt −
1

θ1,1
ǫt−1

and the autocorrelation becomes

ρ1 =

−
1

θ1,1

1 +

(
1

θ1,1

)2 =
−θ1,1

θ21,1 + 1
,

i.e., is unchanged. Thus we cannot identify the MA(1) process uniquely
from the autocorrelation.
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Example 1.4.3 p-th order autoregressive process AR(p)
{Xt} is expressed in the form

Xt = φ1,pXt−1 + φ2,pXt−2 + . . .+ φp,pXt−p + ǫt,

where φ1,p, φ2,p, . . . , φp,p are constants (φp,p = 0) and {ǫt} is a zero mean
white noise process with variance σ2ǫ ..

In contrast to the parameters of an MA(q) process, the {φk,p} must
satisfy certain conditions for {Xt} to be a stationary process — not all
AR(p) processes are stationary

Examples (Figures 12 and 13)

Xt = φ1,1Xt−1 + ǫt = φ1,1{φ1,1Xt−2 + ǫt−1}+ ǫt = φ21,1Xt−2 + φ1,1ǫt−1 + ǫt(1)

...

=
∞∑

k=0

φk1,1ǫt−k (initial condition X−N = 0; let N →∞
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Note E [Xt] = 0.

V ar [Xt] = V ar

[
∞∑

k=0

φk1,1ǫt−k

]

=
∞∑

k=0

V ar{φk1,1ǫt−k} = σ2ǫ

∞∑

k=0

φ2k1,1.

For V ar [Xt] <∞ we must have |φ1,1| < 1, in which case

V ar [Xt] =
σ2ǫ

1− φ21,1
.

To find the form of the acvs, we notice that for τ > 0, Xt−τ is a linear
function of ǫt−τ , ǫt−τ−1, . . . and is therefore uncorrelated with ǫt. Hence

E [ǫtXt−τ ] = 0.

Assuming stationarity and multiplying the defining equation (1) by Xt−τ :
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XtXt−τ = φ1,1XtXt−τ + ǫtXt−τ

=⇒ E [XtXt−τ ] = φ1,1E [Xt−1Xt−τ ]

so that

sτ = φ1,1sτ−1 = φ21,1sτ−2 = . . . = φτ1,1s0 ⇒ ρτ =
sτ
s0

= φτ1,1

However ρτ is an even function of τ , so

ρτ = φ
|τ |
1,1 τ = 0,±1,±2, . . . .

giving exponential decay
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Lag

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.5
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φ=0.5

φ=0.5

φ1,1 = 0.5

.
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Lag

-5 -4 -3 -2 -1 0 1 2 3 4 5
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φ1,1 = −0.5
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Example 1.4.4 (p, q)’th order autoregressive-moving average
process ARMA(p, q)

Here {Xt} is expressed as

Xt = φ1,pXt−1 + . . .+ φp,pXt−p + ǫt − θ1,qǫt−1 − . . .− θq,qǫt−q,

where the φj,p’s and the θj,q’s are all constants (φp,p = 0; θq,q = 0) and
again {ǫt} is a zero mean white noise process with variance σ2ǫ .

The ARMA class is important as many data sets may be approximated in
a more parsimonious way (meaning fewer parameters are needed) by a
mixed ARMA model than by a pure AR or MA process.
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1.5 MODELS FORCHANGINGVARIANCE

Objective: obtain better estimates of local variance in order to obtain a
better assessment of risk.(for example, in finance)

Example 1.5.1 p’th order ARCH(p)

ARCH stands for autoregressive conditionally heteroscedastic

Assume we have a derived time series {Yt} that is (approximately)
uncorrelated but has a variance (volatility) that changes through time,

Yt = σtεt (2)

where {εt} is a white noise sequence with zero mean and unit variance.
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Here, σt represents the local conditional standard deviation of the
process. Note that σt is not observable directly.

{Yt} is ARCH(p) if it satisfies equation (2) and

σ2t = α+ β1,py
2
t−1 + . . .+ βp,py

2
t−p, (3)

where α > 0 and βj,p ≥ 0, j = 1, . . . , p (to ensure the variance remains
positive), and yt−1 is the observed value of the derived time series at time
(t− 1)

Notes:
(a) the absence of the error term in equation (3).

(b) unconstrained estimation often leads to violation of the non-negativity
constraints that are needed to ensure positive variance.

(c) quadratic form (i.e. modelling σ2t ) prevents modelling of asymmetry in
volatility (i.e. volatility tends to be higher after a decrease than after an
equal increase and ARCH cannot account for this).
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Example 1.5.2 ARCH(1)

σ2t = α+ β1,1y
2
t−1

Define, vt = y2t − σ2t ⇒ σ2t = y2t − vt. The model can also be written:

y2t = α+ β1,1y
2
t−1 + vt,

i.e. an AR(1) model for {y2t } where the errors, {vt}, have zero mean, but
as vt = σ2t (ǫ

2
t − 1) the errors are heteroscedastic.

Example 1.5.3 (p, q)’th order generalized autoregressive
conditionally heteroscedastic model GARCH(p, q)
{Yt} is GARCH(p, q) if it satisfies equation (2) and

σ2t = α+ β1,py
2
t−1 + . . .+ βp,py

2
t−p + γ1,qσ

2
t−1 + . . . γq,qσ

2
t−q,

where the parameters are chosen to ensure positive variance.

31



Statistical Analysis and Modelling Week 4 Spring 2004

Example 1.5.4 Stochastic volatility models SV
Stochastic volatility models treat σt as an unobserved random variable
which is assumed to follow a certain stochastic process. The specification
for the derived series {Yt} is:

Yt = σtεt, σ2t = exp(ht),

where εt is white noise with zero mean and unit variance, and let ht, for
example, be an AR(1) process:

ht = α+ β1,1ht−1 + ηt,

where {ηt} is a white noise process with variance σ2η.

If |β1,1| < 1, ht is stationary ⇒ Yt stationary.
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Notes:
(a) unlike the GARCH specification, ht (which defines in turn σt) is NOT
deterministic.

(b) the exponential specification ensures positive conditional variance.

(c) can be further generalized by assuming, for example, ht follows an
ARMA(p, q) model.
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Example 1.5.5 Harmonic with additive white noise (see Figure 14)
Here {Xt} is expressed as

Xt = cos(2πf0t+ φ) + ǫt

f0 is a fixed frequency and {ǫt} is zero mean white noise with variance σ2ǫ .

Case (a) φ is constant.

E [Xt] = E [cos(2πf0t+ φ)] +E [ǫt] = cos(2πf0t+ φ).

so, mean depends on t⇒ not stationary.
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Case (b): φ ∼ U [−π, π] and independent. of {ǫt}.

E [Xt] = E [cos(2πf0t+ φ) + ǫt] = E{cos(2πf0t+ φ)}

Now,

E{cos(2πf0t+ φ)} =

∫ π

−π

cos(2πf0t+ φ)
1

2π
dφ =

[
sin(2πf0t+ φ)

2π

]π

−π

= 0.

So E [Xt] = 0, and, using the fact that {et} and φ are independent.

Cov [Xt,Xt+τ ] = E [XtXt+τ ]

= E [[cos(2πf0t+ φ) + ǫt] [cos(2πf0(t+ τ) + φ) + ǫt+τ ]]

= E [cos(2πf0t+ φ) cos(2πf0t+ φ+ 2πf0τ)] +E [ǫtǫt+τ ] .
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Recall, as {ǫt} is white noise we have,

E{ǫtǫt+τ} =

{
σ2ǫ if τ = 0,
0 if τ = 0,

So, for τ = 0,

Cov{Xt,Xt} = s0 = E{cos2(2πf0t+ φ)}+ σ2ǫ .

Now,

E{cos2(2πf0t+ φ)} =

∫ π

−π

cos2(2πf0t+ φ)
1

2π
dφ

=
1

2

∫ π

−π

[1 + cos(4πf0t+ 2φ)]
1

2π
dφ =

1

2
.
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So, s0 =
1
2 + σ2ǫ , and for τ > 0,

Cov [Xt,Xt+τ ] = sτ = E [cos(2πf0t+ φ) cos(2πf0t+ φ+ 2πf0τ)]

=
1

2
E [cos(4πf0t+ 2φ+ 2πf0τ) + cos(2πf0τ)]

=
1

2

∫ π

−π

cos(2πf0τ)
1

2π
dφ

=
cos(2πf0τ)

2

[
φ

2π

]π

−π

=
cos(2πf0τ)

2

which does not depend on t⇒ Xt is stationary.
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1.5.1 Trend removal and seasonal adjustment

There are certain, quite common, situations where the observations exhibit
a trend — a tendency to increase or decrease slowly steadily over time — or
may fluctuate in a periodic manner due to seasonal effects. The model is
modified to

Xt = µt + Yt

• µt = time dependent mean.

• Yt = zero mean stationary process.
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Example 1.5.6 Trend adjustment for CO2 data: {Xt} is monthly
atmospheric CO2 concentrations expressed in parts per million (ppm)
derived from in situ air samples collected at Mauna Loa observatory,
Hawaii. Monthly data from May 1988 — December 1998, giving N = 128.
The data are plotted in Figure 14. Model suggested by plot:

Xt = α+ βt+ Yt.

(a) Estimate α and β by least squares, and work with the residuals

Ŷt = Xt − α̂− β̂t.

For the CO2 data these are shown in the middle plot of figure 14.
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(b) Take first differences: for the CO2 data these are shown in the bottom
plot of figure 14.

X
(1)
t = Xt −Xt−1 = α+ βt+ Yt − (α+ β(t− 1) + Yt−1) = β + Yt − Yt−1.

Note: if {Yt} is stationary so is {Y
(1)
t } In the case of linear trend, if we

difference again:

X
(2)
t = X

(1)
t −X

(1)
t−1 = (Xt −Xt−1)− (Xt−1 −Xt−2)

= (β + Yt − Yt−1)− (β + Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2, (≡ Y
(1)
t − Y

(1)
t−1 = Y

(2)
t ),

so that the effect of µt(= α+ βt) has been completely removed.
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If µt is a polynomial of degree (d− 1) in t, then dth differences of µt will
be zero (d = 2 for linear trend). Further,

X
(d)
t =

d∑

k=0

(
d

k

)
(−1)kXt−k =

d∑

k=0

(
d

k

)
(−1)kYt−k.

There are other ways of writing this. Define the difference operator

∆ = (1−B)

where BXt = Xt−1 is the backward shift operator (sometimes known as the
lag operator L — especially in econometrics). Then,

X
(d)
t = ∆dXt = ∆dYt.
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For example, for d = 2:

X
(2)
t = (1−B)2Xt = (1−B)(Xt −Xt−1)

= (Xt −Xt−1)− (Xt−1 −Xt−2)

= (β + Yt − Yt−1)− (β + Yt−1 − Yt−2)

= (Yt − Yt−1)− (Yt−1 − Yt−2)

= (1−B)2Yt = ∆2Yt.
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This notation can be incorporated into the ARMA set up, recall if {Xt} is
ARMA(p, q),

Xt = φ1,pXt−1 + . . .+ φp,pXt−p + ǫt − θ1,qǫt−1 − . . .− θq,qǫt−q,

Xt − φ1,pXt−1 − . . .− φp,pXt−p = ǫt − θ1,qǫt−1 − . . .− θq,qǫt−q

(1− φ1,pB − φ2,pB
2 − . . .− φp,pB

p)Xt = (1− θ1,qB − θ2,qB
2 − . . .− θq,qB

q)ǫt

.
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We write this

Φ(B)Xt = Θ(B)ǫt

where

Φ(B) = 1− φ1,pB − φ2,pB
2 − . . .− φp,pB

p

Θ(B) = 1− θ1,qB − θ2,qB
2 − . . .− θq,qB

q

are known as the associated or characteristic polynomials.
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Further, we can generalize the class of ARMAmodels to include differencing
to account for certain types of non-stationarity, namely,

• Xt is called ARIMA(p, d, q) if

Φ(B)(1−B)dXt = Θ(B)ǫt,

Φ(B)∆dXt = Θ(B)ǫt.
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Seasonal adjustment
The model is modified to

Xt = st + Yt

where

• {st} is the seasonal component,

• {Yt} is zero mean stationary process.
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Presuming that the seasonal component maintains a constant pattern over
time with period s, there are again several approaches to removing st. A
popular approach used by Box & Jenkins is to use the operator (1−Bs):

X
(s)
t = (1−Bs)Xt = Xt −Xt−s

= (st + Yt)− (st−s + Yt−s)

= Yt − Yt−s

since st has period s (and so st−s = st).

Figure 16 shows this technique applied to the CO2 data — most of the
seasonal structure and trend has been removed by applying the following
differencing:

(1−Bs)(1−B)Xt.
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1.6 THE GENERAL LINEAR PROCESS

Consider a process of the form

Xt =
∞∑

k=−∞

gkǫt−k,

where {ǫt} is a purely random process, and {gk} is a given sequence of

constants satisfying
−∞∑

k=∞

g2k <∞.

This condition ensures that {Xt} has finite variance. Now we know |ρt| ≤ 1,
so

|sτ | = |Cov [Xt,Xt−τ ]| ≤ σ2X = σ2ǫ
∑

k

g2k <∞.

so the covariance is bounded also.
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If

g−1, g−2, . . . = 0,

then we obtain what is called the General Linear Process

Xt =
∞∑

k=0

gkǫt−k,

where Xt depends only on past and present values ǫt, ǫt−2, ǫt−2, . . . of the
purely random process. Consider the function

G(z) =
∞∑

k=0

gkz
k,

“z-polynomial” where z = e−iω. Note Xt = G(B)ǫt.
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Then write

G(z) =
G1(z)

G2(z)

Call the zeros of G2(z) (the “poles” of G(z)) in the complex plane
z1, z2, . . . , zp, where the zeros are ordered so that z1, . . . , zk are inside
and zk+1, . . . , zp are outside the unit circle |z| = 1. Then,

1

G2(z)
=

p∑

j=1

Aj
z − zj

=




k∑

j=1

Aj
z
×

1(
1−

zj
z

)



+






p∑

j=k+1

Aj
zj
×

−1(
1−

z

zj

)






=
k∑

j=1

Aj
z

∞∑

l=0

(zj
z

)l
−

p∑

j=k+1

Aj
zj

∞∑

l=0

(
z

zj

)l

which is convergent for |z| = 1.
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Replace z by the backshift operator B and apply to {ǫt}:

{
1

G2(B)

}
ǫt =






k∑

j=1

AjB
−1

∞∑

l=0

zljB
−l −

p∑

j=k+1

Ajz
−1
j

∞∑

l=0

z−lj Bl





ǫt

=
k∑

j=1

Aj

∞∑

l=0

zljǫt+l+1 −

p∑

j=k+1

Aj

∞∑

l=0

z−l−1j︸ ︷︷ ︸
outside

ǫt−l.

Hence, if all the roots of G2(z) are outside the unit circle (i.e. all the poles
of G(z) are outside the unit circle) only past and present values of {ǫt} are
involved and the General Linear Process exists.
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Another way of stating this is that

G(z) <∞ |z| ≤ 1

i.e., G(z) is analytic inside and on the unit circle. Thus

• all the poles of G(z) lie outside the unit circle

• all the roots of G−1(z) = 0 lie outside the unit circle

Consider the MA(q) model

Xt = Θ(B)ǫt,

then,

Θ−1(B)Xt = ǫt
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and in general, the expansion of Θ−1(B) is a polynomial of infinite order.
Similarly, consider the AR(p) model

Φ(B)Xt = ǫt,

then,

Xt = Φ−1(B)ǫt

Hence

MA (finite order) ≡ AR (infinite order)
AR (finite order) ≡ MA (infinite order)

provided the infinite order expansions exist
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1.6.1 Invertibility

Consider inverting the general linear process into autoregressive form

Xt =
∞∑

k=0

gkǫt−k =
∞∑

k=0

gkB
kǫt

= G(B)ǫt

so that

G−1(B)Xt = ǫt

The expansion of G−1(B) in powers of B gives the required autoregressive
form provided G−1(B) admits a power series expansion

G−1(z) =
∞∑

k=0

hkz
k

i.e. if G−1(z) is analytic, |z| ≤ 1.
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Thus the model is invertible if All the poles of G−1(z) are outside the unit
circle.

G−1(z) <∞, |z| ≤ 1.

For the MA(q) process, G(z) = Θ(z), and so the invertibility condition is
that Θ(z) has no roots inside or on the unit circle; i.e. all the roots of Θ(z)
lie outside the unit circle.

Example 1.6.1 Consider the following process

Xt = ǫt − 1.3ǫt−1 + 0.4ǫt−2 =⇒ Xt = (1− 1.3B + 0.4B2)ǫt = Θ(B)ǫt

to check if invertible, find roots of Θ(z) = 1− 1.3z + 0.4z2,

1− 1.3z + 0.4z2 = 0 =⇒ 4z2 − 13z + 10 = 0 =⇒ (4z − 5)(z − 2) = 0

roots of Θ(z) are z = 2 and z = 5/4, which are both outside the unit
circle ⇒ invertible.
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1.6.2 Stationarity

For the AR(p) process

Φ(B)Xt = ǫt

so that

Xt = Φ−1(B)ǫt = G(B)ǫt,

so that G(z) = Φ−1(z). Hence the requirement for stationarity is that all
the roots of G−1(z) = Φ(z) must lie outside the unit circle.
For the MA(q) process

Xt = Θ(B)ǫt = G(B)ǫt

and since G(B) = Θ(B) is a polynomial of finite order G(z) <∞, |z| ≤ 1,
automatically.
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Example 1.6.2 Determine whether the following model is stationary
and/or invertible,

Xt = 1.3Xt−1 − 0.4Xt−2 + ǫt − 1.5ǫt−1.

Writing in B notation:

(1− 1.3B + 0.4B2)Xt = (1− 1.5B)ǫt

we have

Φ(z) = 1− 1.3z + 0.4z2

with roots z = 2 and 5/4 (from previous example), so the roots of
Φ(z) = 0 both lie outside the unit circle, therefore model is stationary, and

Θ(z) = 1− 1.5z,

so the root of Θ(z) = 0 is given by z = 2/3 which lies inside the unit
circle and the model is not invertible.
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1.6.3 Directionality and Reversibility

Consider again the general linear model

Xt =
∞∑

k=0

gkǫt−k =
∞∑

k=0

gkB
kǫt = G(B)ǫt

The reversed form is clearly,

Xt =
∞∑

k=0

gkǫt+k =
∞∑

k=0

gkB
−kǫt = G

(
1

B

)
ǫt,

with some stationarity condition.
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Now consider the ARMA(p, q) model given by

Φ(B)Xt = Θ(B)ǫt,

where,

Φ(B) = 1− φ1,pB − φ2,pB
2 − . . .− φp,pB

p

Θ(B) = 1− θ1,qB − θ2,qB
2 − . . .− θq,qB

q

The reversed form of the ARMA(p, q) model is,

Φ

(
1

B

)
Xt = Θ

(
1

B

)
ǫt =⇒ ΦR(B)Xt = Bp−qΘRǫt

where,

ΦR(B) = Bp − φ1,pB
p−1 − φ2,pB

p−2 − . . .− φp,p

ΘR(B) = Bq − θ1,qB
q−1 − θ2,qB

q−2 − . . .− θq,q
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For example, for the ARMA(1,1) model,

(1− φ1,1)Xt = (1− θ1,1)ǫt,

reversed form is

(B − φ1,1)Xt = (B − θ1,1)ǫt

Now Φ(z) = 1− φ1,1z, and a root is the solution of 1− φ1,1z = 0, i.e.,

|z| =

∣∣∣∣
1

φ1,1

∣∣∣∣ > 1⇒ |φ1,1| < 1.
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But, ΦR(z) = z − φ1,1, and so a root is the solution of z − φ1,1 = 0, i.e.,
z = φ1,1. But, since for stationarity |φ1,1| < 1 we have

|z| = |φ1,1| < 1,

so the root of ΦR(z) is inside the unit circle.

Hence the standard assumption for stationarity (roots outside the unit
circle) has within it an assumption of directionality. [N.B. only if the roots
of Φ(z) are on the unit circle is model ALWAYS non-stationary].
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SECTION 2.

Spectral Representations

Spectral analysis is a study of the frequency domain characteristics of a
process, and describes the contribution of each frequency to the variance of
the process. Let us define a complex “jump” process {Z(f)} on the interval
[0, 1/2], such that

dZ(f) ≡






Z(f + df)− Z(f), 0 ≤ f < 1/2;
0, f = 1/2;
dZ∗(−f), −1/2 ≤ f < 0,

where df is a small positive increment. If the intervals [f, f + df ] and
[f ′, f ′+ df ′] are non-intersecting subintervals of [−1/2, 1/2], then the r.v.’s
dZ(f) and dZ(f ′) are uncorrelated.
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We say that the process has orthogonal increments, and the process
itself is called an orthogonal process — this orthogonality results is very
important.

Let {Xt} be a real-valued discrete time stationary process, with zero mean,
the spectral representation theorem states that there exists such an
orthogonal process {Z(f)}, defined on (−1/2, 1/2], such that

Xt =

∫ 1/2

−1/2

ei2πft dZ(f)

for all integers t. The process {Z(f)} has the following properties:

• E{dZ(f)} = 0 ∀ |f | ≤ 1/2.

• E{|dZ(f)|2} ≡ dS(I)(f) say ∀ |f | ≤ 1/2, where dS(I)(f) is called the
integrated spectrum of {Xt}, and
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• for any two distinct frequencies f and f ′ ∈ (−1/2, 1/2]

Cov{dZ(f ′), dZ(f)} = E{dZ∗(f ′)dZ(f)} = 0.

The spectral representation

Xt =

∫ 1/2

−1/2

ei2πft dZ(f) =

∫ 1/2

−1/2

ei2πft |dZ(f)|ei arg{dZ(f)},

means that we can represent any discrete stationary process as an “infi-
nite” sum of complex exponentials at frequencies f with associated random
amplitudes |dZ(f)| and random phases arg{dZ(f)}.
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The orthogonal increments property can be used to define the relationship
between the autocovariance sequence {sτ} and the integrated spectrum
SI(f):

sτ = E [XtXt+τ ] = E [X∗
tXt+τ ]

= E

[∫ 1/2

−1/2

e−i2πf
′t dZ∗(f ′)

∫ 1/2

−1/2

ei2πf(t+τ) dZ(f)

]

=

∫ 1/2

−1/2

∫ 1/2

−1/2

ei2π(f−f
′)tei2πfτE{dZ∗(f ′)dZ(f)}.
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Because of the orthogonal increments property,

E{dZ∗(f ′)dZ(f)} =

{
dS(I)(f) f = f ′

0 f = f ′

so

sτ =

∫ 1/2

−1/2

ei2πfτ dS(I)(f),

which shows that the integrated spectrum determines the acvs for a station-
ary process. If in fact S(I)(f) is differentiable everywhere with a derivative
denoted by S(f) we have

E{|dZ(f)|2} = dS(I)(f) = S(f) df.

The function S(·) is called the spectral density function (sdf). Hence

sτ =

∫ 1/2

−1/2

ei2πftS(f) df.
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But a square summable deterministic sequence {gt} say has the Fourier
representation

gt =

∫ 1/2

−1/2

G(f)ei2πft df where G(f) =
∞∑

t=−∞

gte
−i2πft,

If we assume that S(f) is square integrable, then S(f) is the Fourier
transform of {sτ},

S(f) =
∞∑

τ=−∞

sτe
−i2πfτ .

Hence,

{sτ} ←→ S(f),

i.e., {sτ} and S(f) are a FT. pair.
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2.1 SPECTRAL DENSITY FUNCTION

Subject to its existence, S(·) has the following interpretation: S(f) df is the
average contribution (over all realizations) to the power from components
with frequencies in a small interval about f . The power — or variance — is

∫ 1/2

−1/2

S(f) df.

Hence, S(f) is often called the power spectral density function or just power
spectrum.
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2.1.1 Properties

1. S(I)(f) =
∫ f
−1/2

S(f ′) df ′.

2. 0 ≤ S(I)(f) ≤ σ2 where σ2 = V ar [Xt] ; S(f) ≥ 0.

3. S(I)(−1/2) = 0; S(I)(1/2) = σ2;
∫ 1/2
−1/2 S(f) df = σ2.

4. f < f ′ ⇒ S(I)(f) ≤ S(I)(f ′); S(−f) = S(f).

Except, basically, for the scaling factor σ2, S(I)(f) has all the properties of
a probability distribution function, and hence is sometimes called a spec-
tral distribution function.
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2.1.2 Classification of Spectra

For most practical purposes any integrated spectrum, S(I)(f) can be writ-
ten as

S(I)(f) = S
(I)
1 (f) + S

(I)
2 (f)

where the S
(I)
j (f)’s are nonnegative, nondecreasing functions with S

(I)
j (−1/2) =

0 and are of the following types:

• S
(I)
1 (·) is absolutely continuous, i.e., its derivative exists for almost

all f and is equal almost everywhere to an sdf S(·) such that

S(I)(f) =

∫ f

−1/2

S(f ′)df ′.

• S
(I)
2 (·) is a step function with jumps of size {pl} : l = 1, 2, . . . } at

the points {fl : l = 1, 2, . . . }.
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We consider the integrated spectrum to be a combination of two ‘pure’
forms :

(a) S
(I)
1 (f) ≥ 0;S

(I)
2 (f) = 0. {Xt} is said to have a purely continuous

spectrum and S(f) is absolutely integrable, with

∫ 1/2

−1/2

S(f) cos(2πfτ) df and

∫ 1/2

−1/2

S(f) sin(2πfτ)→ 0,

as τ →∞. But,

sτ =

∫ 1/2

−1/2

ei2πfτS(f) df =

∫ 1/2

−1/2

S(f) cos(2πfτ) df + i

∫ 1/2

−1/2

S(f) sin(2πfτ)df

Hence sτ → 0 as |τ | → ∞. In other words, the acvs diminishes to
zero (called “mixing condition”).
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(b) S
(I)
1 (f) = 0;S

(I)
2 (f) ≥ 0.

Here the integrated spectrum consists entirely of a step function, and
the {Xt} is said to have a purely discrete spectrum or a line spectrum.
The acvs for a process with a line spectrum never damps down to 0.

Examples see Figs. 18. and 19.

(a) white noise, ARMA process.

(b) harmonic process.

Note that other combinations are possible:
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Example 2.1.1 White noise spectrum
Recall that a white noise process {ǫt} has acvs:

sτ =

{
σ2ǫ τ = 0
0 otherwise

Therefore, the spectrum of a white noise process is given by:

Sǫ(f) =
∞∑

τ=−∞

sτe
−i2πfτ = s0 = σ2ǫ .

i.e., white noise has a constant spectrum.
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2.1.3 Spectral density function vs. autocovariance func-

tion

The sdf and acvs contain the same amount of information in that if we
know one of them, we can calculate the other. However, they are often not
equally informative.

• The sdf usually proves to be the more sensitive and interpretable
diagnostic or exploratory tool.

• Figure 20 show the sdf and acvs for two different processes - one with
two pseudo periodicities and one with three.

— The sdf is able to distinguish between the processes while the
acvs’s are not noticeably different.

— dB = 10 log10(power)].
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2.2 SAMPLING AND ALIASING

So far we have only looked at discrete time series {Xt}. However, such a
process is usually obtained by sampling a continuous time process at equal
intervals ∆t, i.e., for a sampling interval ∆t > 0 and an arbitrary time
offset t0, we can define a discrete time process through

Xt ≡ X(t0 + t∆t), t = 0,±1,±2, . . . .

If {X(t)} is a stationary process with, say, sdf SX(t)(·) and acvf s(τ), then
{Xt} is also a stationary process with, say, sdf SXt

(·) and acvs {sτ}.

It can be shown that when S
(I)
X(t) is differentiable:

SXt
(f) =

∞∑

k=−∞

SX(t)

(
f +

k

∆t

)
for |f | ≤

1

2∆t
.
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Thus, the discrete time sdf at f is the sum of the continuous time sdf at
frequencies f ± k

∆t , k = 0, 1, 2, . . . .

The frequency 1/(2∆t) is called the Nyquist frequency; previously we have
taken ∆t = 1, so that the frequency range was |f | ≤ 1

2 .

If SX(t) is essentially zero for |f | > 1/(2∆t) we can expect good correspon-
dence between SXt

(f) and SX(t)(f) for |f | ≤ 1/(2∆t) (since

SX(t)(f ± k/(2∆t)) ≈ 0

for k = 1, 2, . . . ).

If SX(t) is large for some |f | > 1/(2∆t), the correspondence can be quite
poor, and an estimate of SXt

will not tell us much about SX(t).

Figure 21 illustrates this idea.
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2.3 LINEAR FILTERING

A linear time invariant (LTI) filter L that transforms an input sequence
{xt} into an output sequence {yt} has the following three properties:

1. Scale-preservation:

L {{αxt}} = αL {{xt}} .

2. Superposition:

L {{xt,1 + xt,2}} = L {{xt,1}+ L {{xt,2} .

3. Time invariance: If

L{{xt}} = {yt}, then L{{xt+τ}} = {yt+τ}.

Where τ is integer-valued, and the notation {xt+τ} refers to the se-
quence whose t-th element is xt+τ .
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Suppose we use a sequence with t-th element exp(i2πft) as the input to
a LTI digital filter: Let ξf,t = {ei2πft}, and let yf,t denote the output
function:

yf,t = L{ξf,t}.

By properties [1] and [3]:

yf,t+τ = L{ξf,t+τ} = L{ei2πfτξf,t} = ei2πfτL{ξf,t} = ei2πfτyf,t.

In particular, for t = 0:

yf,τ = ei2πfτyf,0.

Now set τ = t:

yf,t = ei2πftyf,0.
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Thus, when ξf,t is input to the LTI digital filter, the output is the same
function multiplied by some constant, yf,0, which is independent of time
but will depend on f . Let G(f) = yf,0. Then

L{ξf,t} = ξf,tG(f).

G(f) is called the transfer function or frequency response function of L.
We can write

G(f) = |G(f)|eiθ(f)

where,

|G(f)| gain
θ(f) = arg{G(f)} phase

Any LTI digital filter can be expressed in the form:

L {{Xt}} =
∞∑

u=−∞

guXt−u ≡ {Yt},
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where {gu} is a real-valued deterministic sequence called the impulse re-
sponse sequence. Note,

L{{ei2πft}} =
∞∑

u=−∞

gue
i2πf(t−u) = ei2πftG(f),

with

G(f) =
∞∑

u=−∞

gue
−i2πfu for |f | ≤

1

2
.

Note:

{gu} ←→ G(f) (F.T. pair).

We have,

Yt =
∑

u

guXt−u
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Recall,

Xt =

∫ 1/2

−1/2

ei2πft dZX(f) Yt =

∫ 1/2

−1/2

ei2πft dZY (f),

which implies that

∫
ei2πft dZY (f) =

∑

u

gu

∫ 1/2

−1/2

ei2πf(t−u) dZX(f)

=

∫ 1/2

−1/2

ei2πftG(f)dZX(f)
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Therefore

dZY (f) = G(f) dZX(f) ; (1 : 1)

and

E{|dZY (f)|
2} = |G(f)|2E{|dZX(f)|

2},

and if the spectral densities exist

SY (f) = |G(f)|2SX(f).

This relationship can be used to determine the sdf’s of discrete parameter
stationary processes.

82



Statistical Analysis and Modelling Week 4 Spring 2004

2.4 SDFS BY LTI FILTERING

Example 2.4.1 q-th order moving average: MA(q),

Xt = ǫt − θ1,qǫt−1 − . . .− θq,qǫt−q,

with usual assumptions (mean zero). Define

L {{ǫt}} = ǫt − θ1,qǫt−1 − . . .− θq,qǫt−q,

so that {Xt} = L {{ǫt}}. To determine G(f), input ei2πft:

L
{
{ei2πft}

}
= ei2πft − θ1,qe

i2πf(t−1) − . . . θq,qe
i2πf(t−q)

= ei2πft
[
1− θ1,qe

−i2πf − . . .− θq,qe
−i2πfq

]
,

so that

Gθ(f) = 1− θ1,qe
−i2πf − . . .− θq,qe

−i2πfq.
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Since,

SX(f) = |Gθ(f)|
2Sǫ(f) and Sǫ(f) = σ2ǫ ,

we have

SX(f) = σ2ǫ |1− θ1,qe
−i2πf − . . .− θq,qe

−i2πfq|2.

If we put z = e−iω where ω = 2πf , then

Gθ(z) = 1− θ1,qz − . . .− θq,qz
q,

and

|Gθ(f)|
2 = Gθ(f)G

∗
θ(f) ≡ Gθ(z)Gθ(z

−1)
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But for invertibility, Gθ(z) has no roots inside or on the unit circle.

Since |Gθ(f)|
2 treats Gθ(z) and Gθ(z

−1) as equals, and the roots of Gθ(z)
and Gθ(z

−1) are inverses, it is not possible to tell whether a
moving-average process is invertible from its spectrum.

This makes sense, since we cannot distinguish these cases using the acvs
either.
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Example 2.4.2 p-th order autoregressive process: AR(p),

Xt − φ1,pXt−1 − . . .− φp,pXt−p = ǫt

Define

L {{Xt}} = Xt − φ1,pXt−1 − . . .− φp,pXt−p,

so that L {{Xt}} = {ǫt}. By analogy to MA(q)

Gφ(f) = 1− φ1,pe
−i2πf − . . .− φp,pe

−i2πfp.

Since,

|Gφ(f)|
2SX(f) = Sǫ(f) and Sǫ(f) = σ2ǫ ,

we have

SX(f) =
σ2ǫ

|1− φ1,pe
−i2πf − . . .− φp,pe

−i2πfp|2
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Interpretation of AR spectra
Recall that for an AR process we have characteristic equation

1− φ1,pz − φ2,pz
2 − . . .− φp,pz

p

and the process is stationary if the roots of this equation lie outside the
unit circle.

Example 2.4.3 Consider an AR(2) process with complex characteristic
roots, these roots must form a complex conjugate pair:

z =
1

r
e−i2πf

′

, z =
1

r
ei2πf

′

and we can write

1− φ1,pz − φ2,pz
2 = (rz − e−i2πf

′

)(rz − ei2πf
′

) = r2z2 − zr(e−i2πf
′

+ ei2πf
′

) + 1

= r2z2 − 2zr cos(2πf ′) + 1
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and the AR process can be written

(r2B2 − 2r cos(2πf ′)B + 1)Xt = ǫt

⇒ Xt = 2r cos(2πf ′)Xt−1 − r2Xt−2 + ǫt

The spectrum can be written in terms of the complex roots, by
substituting z = e−i2πf in the characteristic equation.

SX(f) =
σ2ǫ

|re−i2πf − e−i2πf ′ |2|re−i2πf − ei2πf ′ |2

Now,

|re−i2πf − e−i2πf
′

|2 = |e−i2πf(r − e−i2π(f
′−f))|2

= (r − e−i2π(f
′−f))(r − ei2π(f

′−f))

= r2 − r(e−i2π(f
′−f) + ei2π(f

′−f)) + 1

= r2 − 2r cos(2π(f ′ − f)) + 1
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similarly,

|re−i2πf − ei2πf
′

|2 = r2 − 2r cos(2π(f ′ + f)) + 1

giving,

SX(f) =
σ2ǫ

(r2 − 2r cos(2π(f ′ + f)) + 1)(r2 − 2r cos(2π(f ′ − f) + 1)

The spectrum will be at its largest when denominator is at its smallest -
when r is close to 1 this occurs when f ≈ ±f ′. Also notice that at
f = ±f ′ as r→ 1 (from below as 0 < r < 1) so the spectrum becomes
larger.

Generally speaking complex roots will induce a peak in the spectrum,
indicating a tendency towards a cycle at frequency f ′. Also, the larger
the value of r the more dominant the cycle. This may be termed
pseudo-cyclical behaviour (recall that a deterministic cycle will show up
at a sharp spike — i.e., a line spectrum).
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Example 2.4.4 (p, q)−th order autoregressive, moving average process:
ARMA(p, q),

Xt − φ1,pXt−1 − . . .− φp,pXt−p = ǫt − θ1,qǫt−1 − . . .− θq,qǫt−q

If we write this as

Xt − φ1,pXt−1 − . . .− φp,pXt−p = Yt;

Yt = ǫt − θ1,qǫt−1 − . . .− θq,qǫt−q,

then we have

|Gφ(f)|
2SX(f) = SY (f) and SY (f) = |Gθ(f)|

2Sǫ(f)

so that

SX(f) = Sǫ(f)
|Gθ(f)|

2

|Gφ(f)|2
= σ2ǫ

|1− θ1,qe
−i2πf − . . .− θq,qe

−i2πfq|2

|1− φ1,pe
−i2πf − . . .− φp,pe

−i2πfp|2
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Example 2.4.5 Differencing
Let {Xt} be a stationary process with sdf SX(f). Let Yt = Xt −Xt−1.
Then

L
{
{ei2πft}

}
= ei2πft − ei2πf(t−1)

= ei2πft(1− e−i2πf )

= ei2πftG(f),

so

|G(f)|2 = |1− e−i2πf |2 = |e−iπf (eiπf − e−iπf |2

= |e−iπf2i sin(πf)|2 = 4 sin2(πf).
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