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Random quantity denoted X

Probability model denoted fX (x ; θ) (pdf) or FX (x ; θ) (cdf)

FX (x) =

∫ x

−∞
fX (t; θ) dt

Finite dimensional parameter θ

Data x1, x2, . . . , xn available
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Repeated observations of random variables X1,X2, . . . ,Xn.

Different assumptions about the data collection mechanisms lead
to different probability models.

Crucial assumptions relate to dependencies between the variables.
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(a) Scalar random variables, mutually independent

repeated observation of the same quantity
observations do not influence/affect each other.
the random sample assumption
UNIVARIATE ANALYSIS

(b) Vector random variables, mutually independent

repeated observation of the same set of quantities or features
observations do not influence/affect each other.
possible dependence between features
MULTIVARIATE ANALYSIS
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(c) Predictor/Response

repeated observation of the paired variables
systematic (causal) relationship between variables.
REGRESSION

(d) Repeated Measures

small number of repeated observations of the same set of
quantities on the same experimental units
possible dependence between repeated observations
MULTIVARIATE ANALYSIS
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(e) Scalar, repeated observation, time-ordered

long sequences of repeated measurement of single quantity.
time ordering structures dependence between variables
TIME SERIES ANALYSIS

(f) Vector-valued, repeated observation, time-ordered

long sequence of vector observation
time ordering structures dependence between variables
MULTIVARIATE TIME SERIES
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Dependence

Latent Structure

Periodicity

System changes

Nonstationarity
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Objectives of data analysis:

Summary

Comparison

Inference

Testing

Model Assessment

Prediction/Forecasting
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Why do we bother with probabilistic modelling ?

because we are forced to deal with uncertainty due the lack of
perfect information

because we wish to represent the uncertainty in our analyses
correctly

because we wish to act in a coherent fashion in combining or
updating our knowledge or opinion

because we want to carry out prediction

Probability is the only framework that offers coherent treatment of
uncertainty.
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Probability Models: Common Univariate Distributions

Discrete distributions

Binomial
Geometric
Poisson

Continuous distributions

Exponential
Gamma (Chisquared)
Beta
Normal
Student-t
Fisher-F
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Binomial distribution

fX (x ; θ) =

(
n

x

)
θx(1− θ)n−x x = 0, 1, 2, . . . , n

for parameter θ > 0, and positive integer n > 0.

Number of successes in n independent and identical 0/1 trials.

David A. Stephens Statistical Inference and Methods



Random variables
Probability Models

Regression and Least-Squares
Stochastic Processes

Univariate Distributions
Multivariate Distributions
Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling 27/ 61

Poisson distribution

fX (x ;λ) =
exp{−λ}λx

x!
x = 0, 1, 2, . . .

for parameter λ > 0.

Most common model for count data.
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Gamma distribution

fX (x ;α, β) =
βα

Γ(α)
xα−1 exp{−βx} x > 0

for parameters α, β > 0, where

Γ(α) =

∫ ∞

0
xα−1 exp{−x} dx = (α− 1)Γ(α− 1).

Special Case: if α = ν/2 for positive integer ν, and β = 1/2,

Gamma(ν/2, 1/2) ≡ Chisquared(ν)
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Normal (Gaussian) distribution

fX (x ;µ, σ) =

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x − µ)2

}
for parameters µ, σ where σ > 0.

Most commonly used model for data analysis.
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Models linked to the Normal:

Chisquared

Student-t

Fisher-F

Laplace

Distributions linked via transformation.
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Multivariate distributions: versions of

Binomial (Multinomial)

Gamma (Multivariate Gamma, Wishart)

Beta (Dirichlet)

Normal (Multivariate Normal)

Student-t

exist.
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Multivariate Normal Distribution

Suppose that vector random variable X = (X1,X2, . . . ,Xk)T has a
multivariate normal distribution with pdf given by

fX(x;µ,Σ) =

(
1

2π

)k/2 1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
where Σ is the k × k (positive definite, non-singular)
variance-covariance matrix

Consider the case where the expected value µ is the k × 1 zero
vector; results for the general case are easily available by
transformation.
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Consider partitioning X into two components X1 and X2 of
dimensions d and k − d respectively, that is,

X =

[
X1

X2

]
.

We attempt to deduce

(a) the marginal distribution of X1, and

(b) the conditional distribution of X2 given that X1 = x1.
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First, write

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ11 is d × d , Σ22 is (k − d)× (k − d), Σ21 = ΣT

12, and

Σ−1 = V =

[
V11 V12

V21 V22

]
so that ΣV = Ik (Ir is the r × r identity matrix) gives[

Σ11 Σ12

Σ21 Σ22

] [
V11 V12

V21 V22

]
=

[
Id 0
0 Ik−d

]

David A. Stephens Statistical Inference and Methods
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Σ11V11 + Σ12V21 = Id (1)

Σ11V12 + Σ12V22 = 0 (2)

Σ21V11 + Σ22V21 = 0 (3)

Σ21V12 + Σ22V22 = Ik−d . (4)

From the multivariate normal pdf, we can re-express the term in
the exponent as

xTΣ−1x = xT
1 V11x1 + xT

1 V12x2 + xT
2 V21x1 + xT

2 V22x2. (5)

David A. Stephens Statistical Inference and Methods
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We can write

xTΣ−1x = (x2 −m)TM(x2 −m) + c (6)

and by comparing with equation (5) we can deduce that, for
quadratic terms in x2,

xT
2 V22x2 = xT

2 Mx2 ∴ M = V22 (7)

for linear terms

xT
2 V21x1 = xT

2 Mm ∴ m = V−1
22 V21x1 (8)

and for constant terms

xT
1 V11x1 = c + mTMm ∴ c = xT

1 (V11 − V T
21V

−1
22 V21)x1

(9)
David A. Stephens Statistical Inference and Methods
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That is

xTΣ−1x = (x2 − V−1
22 V21x1)

TV22(x2 − V−1
22 V21x1)

+xT
1 (V11 − V T

21V
−1
22 V21)x1, (10)

a sum of two terms, where the first can be interpreted as a
function of x2, given x1, and the second is a function of x1 only.

David A. Stephens Statistical Inference and Methods



Random variables
Probability Models

Regression and Least-Squares
Stochastic Processes

Univariate Distributions
Multivariate Distributions
Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling 38/ 61

Hence
fX(x) = fX2|X1

(x2|x1)fX1(x1) (11)

where

fX2|X1
(x2|x1) ∝ exp

{
−1

2
(x2 − V−1

22 V21x1)
TV22(x2 − V−1

22 V21x1)

}
(12)

giving that
X2|X1 = x1 ∼ N

(
V−1

22 V21x1,V
−1
22

)
(13)
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and

fX1(x1) ∝ exp

{
−1

2
xT
1 (V11 − V T

21V
−1
22 V21)x1

}
(14)

giving that

X1 ∼ N
(
0, (V11 − V T

21V
−1
22 V21)

−1
)

. (15)
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But, from equation (2), Σ12 = −Σ11V12V
−1
22 , and then from

equation (1), substituting in Σ12,

Σ11V11 − Σ11V12V
−1
22 V21 = Id

so that

Σ11 = (V11 − V12V
−1
22 V21)

−1 = (V11 − V T
21V

−1
22 V21)

−1.

Hence
X1 ∼ N (0,Σ11) , (16)

that is, we can extract the Σ11 block of Σ to define the marginal
variance-covariance matrix of X1.
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From equation (2), V12 = −Σ−1
11 Σ12V22, and then from equation

(4), substituting in V12

−Σ21Σ
−1
11 Σ12V22 + Σ22V22 = Ik−d

so that

V−1
22 = Σ22 − Σ21Σ

−1
11 Σ12 = Σ22 − ΣT

12Σ
−1
11 Σ12.
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Finally, from equation (2), taking transposes on both sides, we
have that V21Σ11 + V22Σ21 = 0. Then pre-multiplying by V−1

22 ,
and post-multiplying by Σ−1

11 , we have

V−1
22 V21 + Σ21Σ

−1
11 = 0 ∴ V−1

22 V21 = −Σ21Σ
−1
11 ,

so we have, substituting into equation (13), that

X2|X1 = x1 ∼ N
(
−Σ21Σ

−1
11 x1,Σ22 − Σ21Σ

−1
11 Σ12

)
. (17)
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Summary
Any marginal, and any conditional distribution of a multivariate
normal joint distribution is also multivariate normal.

These results are very important in regression modelling to allow
study of properties of estimators and predictors.
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The Central Limit Theorem

The Normal distribution is commonly used in statistical
calculations to approximate the distribution of sum random
variables. For example, common estimators include the sample
mean X and sample variance s2

X =
1

n

n∑
i=1

Xi s2 =
1

n − 1

n∑
i=1

(Xi − X )2

The Central Limit Theorem Characterizes the distribution of such
variables (under certain regularity conditions)
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THEOREM (Lindeberg-Lévy)
Suppose X1, ...,Xn are i.i.d. random variables with mgf MX , with
EfX [Xi ] = µ and VarfX [Xi ] = σ2 < ∞.

Then

Zn =

n∑
i=1

Xi − nµ

√
nσ2

L−→ Z ∼ N(0, 1)

as n −→∞,irrespective of the distribution of the Xi s.

That is, the distribution of Zn tends to a standard normal
distribution as n tends to infinity.

David A. Stephens Statistical Inference and Methods
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This result allows us to construct the following approximations:

Zn
·
∼
·

N(0, 1)

Tn =
n∑

i=1

Xi
·
∼
·

N(nµ, nσ2)

X =
1

n

n∑
i=1

Xi
·
∼
·

N(µ, σ2/n)

David A. Stephens Statistical Inference and Methods
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Regression Modelling

Suppose we have

response Y

predictors X1,X2, . . . ,XD

we want to explain the variation in Y via a function of
X1,X2, . . . ,XD .
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The observed value of Y can be modelled as

Y = g(X , β) ◦ ε

where

X is a design matrix of predictors

β is K × 1 parameter vector

g is some link function

ε is a random (residual) error vector

◦ is a operator defining the measurement error scale (typically
additive or multiplicative)

David A. Stephens Statistical Inference and Methods
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Most typically, ◦ is addition, and the random error term is
presumed Normally distributed.

The model can be simplified further if it can be written

Y = g(X )β + ε

that is, linear in the parameters.

Inference for this model is straightforward. Another common
assumption has the elements of error vector ε as identically
distributed and independent random variables (homoscedastic).
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All of these simplifying assumptions can be relaxed:

homoscedasticity (yields GENERALIZED REGRESSION)

independence (yields MULTIVARIATE REGRESSION)

linearity (yields NON-LINEAR REGRESSION)

normality (yields GENERALIZED LINEAR MODELLING)
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Stochastic Processes

Can think of repeated observation of the system X1,X2, . . . ,

representing a sequence of observations of a process evolving
in discrete time usually at fixed, equal intervals.

representing a sequence of discrete-time observations of a
process evolving in continuous time

X could be univariate or multivariate. We wish to use time
series analysis to characterize time series and understand structure.

David A. Stephens Statistical Inference and Methods



Random variables
Probability Models

Regression and Least-Squares
Stochastic Processes

Process Description
Stationarity

Session 1: Probabilistic and Statistical Modelling 52/ 61

Possibilities

State (possible values of X ) Time Notation

Continuous Continuous X (t)

Continuous Discrete Xt

Discrete Continuous

Discrete Discrete

David A. Stephens Statistical Inference and Methods
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Denote the process by {Xt}. For fixed t, Xt is a random variable
(r.v.), and hence there is an associated cumulative distribution
function (cdf):

Ft(a) = P(Xt ≤ a),

and

E [Xt ] =

∫ ∞

−∞
x dFt(x) ≡ µt Var [Xt ] =

∫ ∞

−∞
(x − µt)

2 dFt(x).

David A. Stephens Statistical Inference and Methods
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We are interested in the relationships between the various r.v.s
that form the process. For example, for any t1 and t2 ∈ T ,

Ft1,t2(a1, a2) = P(Xt1 ≤ a1,Xt2 ≤ a2)

gives the bivariate cdf. More generally for any t1, t2, . . . , tn ∈ T ,

Ft1,t2,...,tn(a1, a2, . . . , an) = P(Xt1 ≤ a1, . . . ,Xtn ≤ an)

We consider the subclass of stationary processes.

David A. Stephens Statistical Inference and Methods
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COMPLETE/STRONG/STRICT stationarity
{Xt} is said to be completely stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that

t1 + τ , t2 + τ , . . . , tn + τ ∈ T

are also contained in the index set, the joint cdf of
{Xt1 ,Xt2 , . . . ,Xtn} is the same as that of
{Xt1+τ ,Xt2+τ , . . . ,Xtn+τ} i.e.,

Ft1,t2,...,tn(a1, a2, . . . , an) = Ft1+τ,t2+τ,...,tn+τ (a1, a2, . . . , an),

so that the probabilistic structure of a completely stationary
process is invariant under a shift in time.
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SECOND-ORDER/WEAK/COVARIANCE stationarity
{Xt} is said to be second-order stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that t1 + τ , t2 + τ , . . . , tn + τ ∈ T are also
contained in the index set, all the joint moments of orders 1 and 2
of {Xt1 ,Xt2 , . . . ,Xtn} exist and are finite. Most importantly, these
moments are identical to the corresponding joint moments of
{Xt1+τ ,Xt2+τ , . . . ,Xtn+τ}. Hence,

E [Xt ] ≡ µ Var [Xt ] ≡ σ2 (= E
[
X 2

t

]
− µ2),

are constants independent of t.
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If we let τ = −t1,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [X0Xt2−t1 ] ,

and with τ = −t2,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [Xt1−t2X0] .

David A. Stephens Statistical Inference and Methods
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Hence, E [Xt1Xt2 ] is a function of the absolute difference |t2 − t1|
only, similarly, for the covariance between Xt1 & Xt2 :

Cov [Xt1 ,Xt2 ] = E [(Xt1 − µ)(Xt2 − µ)]

= E [Xt1Xt2 ]− µ2.

For a discrete time second-order stationary process {Xt} we define
the autocovariance sequence (acvs) by

sτ ≡ Cov [Xt ,Xt+τ ]

= Cov [X0,Xτ ] .

David A. Stephens Statistical Inference and Methods
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NOTES:

τ is called the lag.

s0 = σ2 and s−τ = sτ .

The autocorrelation sequence (acs) is given by

ρτ =
sτ
s0

=
Cov [Xt ,Xt+τ ]

σ2
.

Since ρτ is a correlation coefficient, |sτ | ≤ s0.

David A. Stephens Statistical Inference and Methods
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The variance-covariance matrix of equispaced X ’s,
(X1,X2, . . . ,XN)T has the form

s0 s1 . . . sN−2 sN−1

s1 s0 . . . sN−3 sN−2
...

. . .

sN−2 sN−3 . . . s0 s1
sN−1 sN−2 . . . s1 s0


which is known as a symmetric Toeplitz matrix – all elements
on a diagonal are the same. Note the above matrix has only
N unique elements, s0, s1, . . . , sN−1.

David A. Stephens Statistical Inference and Methods
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A stochastic process {Xt} is called Gaussian if, for all n ≥ 1
and for any t1, t2, . . . , tn contained in the index set, the joint
cdf of Xt1 ,Xt2 , . . . ,Xtn is multivariate Gaussian.

2nd-order stationary Gaussian ⇒ complete stationarity

follows as the multivariate Normal distribution is completely
characterized by 1st and 2nd moments
not true in general.

Complete stationarity ⇒ 2nd-order stationary in general.

David A. Stephens Statistical Inference and Methods
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