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Objectives

» Data Analyses
» Methods of Statistical Inference
» Classes of Models

» Statistical Computation Techniques

Data Analyses

» Summary/exploratory
» Inferential
» Predictive

Methods of Statistical Inference

Frequentist
Likelihood
Quasi-likelihood
Estimating Equations

Generalized Method of Moments
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Bayesian




Classes of Models

Regression

Univariate, independent

Multivariate, independent

Generalized Regression
Univariate, dependent (Time Series)

Multivariate, dependent

Statistical Computation

Numerical Methods
Kalman Filter
Monte Carlo
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Markov chain Monte Carlo

Outline of Syllabus

Session 1

1 Probabilistic and Statistical Modelling

» Forms of Data

Probability and probability distributions
Multivariate modelling

Least-squares and Regression
Stochastic Processes
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Session 2

2 Inference

Likelihood theory

Quasi-likelihood /Estimating Equations
Generalized Method of Moments
Bayesian theory
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3 Time Series Analysis
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ARIMA /Box-Jenkins Modelling
Forecasting

Spectral Methods

Long memory

Nonstationarity

Unit roots

Session 4

4 Multivariate Time Series

» Vector ARIMA
» Cointegration

Session 5

5 Statistical Computation

v
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Monte Carlo

Importance Sampling
Quasi Monte Carlo
Markov chain Monte Carlo
Sequential Monte Carlo




Session 6

6 Filtering

» Kalman Filter
» Particle Filter

Session 7

7 Volatility Modelling

» ARCH/GARCH
» Stochastic volatility
» Multivariate Methods

Session 8

8 Panel Data
» Models for Longitudinal Data

Part |

Session 1: Probabilistic Modelling
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Random quantity denoted X

Probability model denoted fx(x;6) (pdf) or Fx(x;8) (cdf) Repeated observations of random variables X1, X, ..., Xj.
x Different assumptions about the data collection mechanisms lead
Fx(x) = /OO fx(t;0) dt to different probability models.
Crucial assumptions relate to dependencies between the variables.
Finite dimensional parameter 6
Data x1,x», ..., x, available
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(a) Scalar random variables, mutually independent (c) Predictor/Response

repeated observation of the same quantity » repeated observation of the paired variables

observations do not influence/affect each other. . . . .
; » systematic (causal) relationship between variables.
the random sample assumption » REGRESSION

UNIVARIATE ANALYSIS

vV YyVvVYyy

: : d) Repeated M
(b) Vector random variables, mutually independent (d) Repeated Measures

» small number of repeated observations of the same set of
quantities on the same experimental units
» possible dependence between repeated observations

possible cependence betieen features > MULTIVARIATE ANALYSIS

repeated observation of the same set of quantities or features
observations do not influence/affect each other.
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(e) Scalar, repeated observation, time-ordered

> long sequences of repeated measurement of single quantity.

> time ordering structures dependence between variables
» TIME SERIES ANALYSIS

(f) Vector-valued, repeated observation, time-ordered

» long sequence of vector observation
» time ordering structures dependence between variables
» MULTIVARIATE TIME SERIES
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Dependence
Latent Structure
Periodicity

System changes
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Nonstationarity
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Objectives of data analysis:

v

Summary
Comparison
Inference
Testing

Model Assessment

vV v.v. v Y

Prediction /Forecasting
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Why do we bother with probabilistic modelling ?
» because we are forced to deal with uncertainty due the lack of
perfect information

» because we wish to represent the uncertainty in our analyses
correctly

> because we wish to act in a coherent fashion in combining or
updating our knowledge or opinion

» because we want to carry out prediction

Probability is the only framework that offers coherent treatment of
uncertainty.
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Probability Models: Common Univariate Distributions

» Discrete distributions

» Binomial
» Geometric
» Poisson

» Continuous distributions

Exponential

Gamma (Chisquared)
Beta

Normal

Student-t

Fisher-F

vV VY Y VY VY
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» Binomial distribution
fx(x;0) = <n>0x(1—0)"_x x=0,1,2,...,n
X

for parameter 6 > 0, and positive integer n > 0.

Number of successes in n independent and identical 0/1 trials.
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» Poisson distribution

_exp{—A}\*

x!

fx(x; \) x=0,1,2,...

for parameter A > 0.

Most common model for count data.
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> Galllll a diStlibUtiOﬂ
1X(X' (0] /B) = —FX exp{—,@x} X > 0
Y I (Oé)

for parameters a, 3 > 0, where

MNa) = /000 x*Lexp{—x} dx = (a — 1)[ (o — 1).

Special Case: if @ = /2 for positive integer v, and § = 1/2,

Gamma(v/2,1/2) = Chisquared(v)




Session 1: Probabilistic and Statistical Modelling

29/ 61

» Normal (Gaussian) distribution

1 \1/2 1 .
fx(x;p, o) = (271_02) exp{—w(x—,u) }

for parameters p, 0 where o > 0.

Most commonly used model for data analysis.
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Models linked to the Normal:
» Chisquared
» Student-t
» Fisher-F
» Laplace

Distributions linked via transformation.
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Multivariate distributions: versions of

Binomial (Multinomial)

Gamma (Multivariate Gamma, Wishart)
Beta (Dirichlet)

Normal (Multivariate Normal)
Student-t

vV v.v. v .Y

exist.
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Multivariate Normal Distribution

Suppose that vector random variable X = (X1, X2,...,X,)" has a
multivariate normal distribution with pdf given by

1\*? 1 1 -
fx(xip, X) = (27r> WGXP{2(XN) X (Xﬂ)}
where ¥ is the k x k (positive definite, non-singular)

variance-covariance matrix

Consider the case where the expected value p is the k x 1 zero
vector; results for the general case are easily available by
transformation.
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Consider partitioning X into two components X; and Xy of
dimensions d and k — d respectively, that is,

xzm].

(a) the marginal distribution of Xj, and
(b) the conditional distribution of X, given that X; = x;.

We attempt to deduce
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First, write

Y1 Yoo
where Y17 is d x d, Y2 is (k — d) x (k — d), £p1 = ¥],, and

z:[zll z12}

s-1_y_ { Vi1 VlZ]

Vor Voo

so that XV = i (I, is the r x r identity matrix) gives

[211 Z12}[V11 V12:||:Id 0 ]
Y01 Yo Vor Voo 0 l—g
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YV + XV = Iy
Y1iVio+ XV = 0
o1V + 2oV = 0
Vi + XV = g

From the multivariate normal pdf, we can re-express the term in
the exponent as

XY 1x = XI Vi1x1 + X—lr Vioxs + X—2r Voi1x1 + X;— Vooxs.

(1
(2
(3
(4

~— — N N

(5)
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We can write
x"E Ix=(xo —m)TM(x; —m) +c

and by comparing with equation (5) we can deduce that, for
quadratic terms in xo,

X;— V22X2 = X;—sz M = V22
for linear terms
x; Voix1 = x;Mm m= V2_21 Vo1xq

and for constant terms

xI Viixy = c+ m' Mm

(7)

(8)

c=x{ (Vi1 — V51 Vit Var )xg

(9)
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That is

X'y Ix = (X2 — V{zl V21X1)T V22(X2 — Vzal V21X1)
+x{ (Vi1 — Vo) V' Var )xa, (10)

a sum of two terms, where the first can be interpreted as a
function of x2, given x1, and the second is a function of x3 only.
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Hence
fx(x) = fx,|x, (x2|x1) fx, (x1) (11)

where

1 _ _
fXg\Xl (X2|X1) X exp {—2(X2 — V221 V21X1)T V22(X2 — V221 V21X1)
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and
1 _
fxl (Xl) X exp {—2X-1r( V11 — Vz-li V221 \/21)X1} (14)

giving that

Xy~ N (o, (Va1 — VI V5t vgl)—1> . (15)

(12)
giving that
X2|X1 = X1 ~ N (V2_21 \/21X1, V2_21) (13)
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But, from equation (2), X1 = —¥11 V12 V2_21, and then from
equation (1), substituting in X1z,
Y11 Va1 — X11 Vi Vit Vor = Iy
so that
Y11= (Vir — Via Vit Vg ) 1 = (Vag — Vo Vit Vg ) 7L
Hence
X1~ N(0,%11), (16)

that is, we can extract the ¥ 1; block of ¥ to define the marginal
variance-covariance matrix of Xj.
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From equation (2), V12 = —21_11212 V55, and then from equation
(4), substituting in Vi

YT 1o Var + oo Van = l_g
so that

V{zl =39 — 221ZI11212 =39 — ZIQZIllzlz.
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Finally, from equation (2), taking transposes on both sides, we
have that V13X 11 + VaoXo; = 0. Then pre-multiplying by V{zl,
and post-multiplying by Zl_ll, we have

Vot Vor + 1 X171 =0 Vay Vo1 = =X X7,

so we have, substituting into equation (13), that

Xg’xl =x3 ~N (—221ZI11X1, 200 — 221ZI11212) . (17)
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Summary
Any marginal, and any conditional distribution of a multivariate
normal joint distribution is also multivariate normal.

These results are very important in regression modelling to allow
study of properties of estimators and predictors.
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The Central Limit Theorem

The Normal distribution is commonly used in statistical
calculations to approximate the distribution of sum random
variables. For example, common estimators include the sample
mean X and sample variance s®

1 1 n _
xzn;x,- 52:n_1Z(X;—X)2

i=1

The Central Limit Theorem Characterizes the distribution of such
variables (under certain regularity conditions)
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THEOREM (Lindeberg-Lévy)
Suppose Xi, ..., X, are i.i.d. random variables with mgf Mx, with
EfX [X,] = U and Vaer [X,] = 0% < 0.

Then

n
ZX; — nu
i=1

Zy="1t 57 N(0,1)
no?

as n — oo, irrespective of the distribution of the Xjs.

That is, the distribution of Z, tends to a standard normal
distribution as n tends to infinity.
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This result allows us to construct the following approximations:
Z, ~ N(0,1)

Tn:ZXi ~ N(np, no?)

XZlZX" S N(uo?/n)
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Regression Modelling

Suppose we have

» response Y
» predictors Xi, Xo,..., Xp

we want to explain the variation in Y via a function of
X1, X2,...,Xp.
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The observed value of Y can be modelled as

Y =g(X,0)oe€
where

X is a design matrix of predictors

(B is K x 1 parameter vector

>

>

» g is some link function

> ¢ is a random (residual) error vector
| 2

o is a operator defining the measurement error scale (typically
additive or multiplicative)
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Most typically, o is addition, and the random error term is
presumed Normally distributed.

The model can be simplified further if it can be written
Y =g(X)B+e

that is, linear in the parameters.

Inference for this model is straightforward. Another common
assumption has the elements of error vector € as identically
distributed and independent random variables (homoscedastic).
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All of these simplifying assumptions can be relaxed:

homoscedasticity (yields GENERALIZED REGRESSION)
independence (yields MULTIVARIATE REGRESSION)
linearity (yields NON-LINEAR REGRESSION)

normality (yields GENERALIZED LINEAR MODELLING)

vV v.v Yy
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Stochastic Processes

Can think of repeated observation of the system X1, Xo, ...,

> representing a sequence of observations of a process evolving
in DISCRETE time usually at fixed, equal intervals.

> representing a sequence of discrete-time observations of a
process evolving in CONTINUOUS time

X could be univariate or multivariate. We wish to use time

series analysis to characterize time series and understand structure.
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Possibilities
State (possible values of X) Time Notation
Continuous Continuous X(t)
Continuous Discrete Xi
Discrete Continuous

Discrete Discrete
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Denote the process by {X:}. For fixed t, X; is a random variable
(r.v.), and hence there is an associated cumulative distribution
function (cdf):

Fi(a) = P(X; < a),

and

E[X] = / TR =g, Var[X] = / T (x = ) dF().

—00 —0o0
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We are interested in the relationships between the various r.v.s
that form the process. For example, for any t; and t, € T,

Ft1,t2(alv ‘92) — P(th S al)XtQ S ‘32)
gives the bivariate cdf. More generally for any t1,t, ..., th € T,
Ftl,tz,..‘,tn(aly az, ..., an) = P(th S a, ... 7th S an)

We consider the subclass of stationary processes.
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COMPLETE/STRONG/STRICT stationarity
{X:} is said to be completely stationary if, for all n > 1, for any

ti,to,...,th e T
and for any 7 such that
b+, to+7,. .. th+T7ET

are also contained in the index set, the joint cdf of
{Xt,, Xty, ..., Xt,} is the same as that of

{th—‘r’ra Xt2+7—, ce ,th+T} i.e.,
Ftl,tz,...,tn(alv ‘927 ceey an) - Ft‘1+7’,t2+7’,...,tn+‘r(ala 32, ey an)7

so that the probabilistic structure of a completely stationary
process is invariant under a shift in time.
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SECOND-ORDER/WEAK/COVARIANCE stationarity
{X:} is said to be second-order stationary if, for all n > 1, for any
ti,to,...,th €T

and for any 7 such that ty + 7, to +7,...,t, +7 € T are also
contained in the index set, all the joint moments of orders 1 and 2
of {Xt,, Xt,, ..., Xt,} exist and are finite. Most importantly, these
moments are identical to the corresponding joint moments of
{Xt,+7, Xty4rs - - - Xt,4+7 . Hence,

E[X]=p Var [X¢] = o? (=E [XL?] - M2)7

are constants independent of t.
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If we let 7 = —ty,
E [thxtz] =E [Xt1+TXt2+T] =E [XOth—t1] )
and with 7 = — 1y,

E [Xflxtz] =E [Xf1+TXt2+T] =E [Xt1—t2X0] .
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Hence, E[X: X4,] is a function of the absolute difference |ty — ti|
only, similarly, for the covariance between X & Xj,:

Cov [vath] = E [(Xfl - M)(sz - M)]

= E [thxtz] - M2~

For a discrete time second-order stationary process {X;} we define
the autocovariance sequence (acvs) by

S = Cov [)(1_-7 Xt+T]

= Cov[Xp, X;].
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NOTES:
> 7 is called the lag.
» so=oc%ands_, =s,.
» The autocorrelation sequence (acs) is given by
- Sr - Cov [Xt7Xt+T]
Pr=_=—" 2 -
S0 o

» Since p, is a correlation coefficient, |s;| < sp.
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» The variance-covariance matrix of equispaced X's,
(X1, Xa,...,Xn)T has the form

50 S1 SN—2 SN-1

S1 So SN—3  SN-2
SN—2 SN—-3 ... S0 S1
SN—1 SN—2 ... S1 S0

which is known as a symmetric Toeplitz matrix — all elements
on a diagonal are the same. Note the above matrix has only
N unique elements, sp,S1,...,Sy_1.
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» A stochastic process {X;} is called Gaussian if, for all n > 1
and for any ti, tp, ..., t, contained in the index set, the joint
cdf of Xy, Xt,, ..., X, is multivariate Gaussian.

n

» 2nd-order stationary Gaussian = complete stationarity

» follows as the multivariate Normal distribution is completely
characterized by 1st and 2nd moments
> not true in general.

» Complete stationarity = 2nd-order stationary in general.




