
Statistical Inference and Methods

David A. Stephens

Department of Mathematics
Imperial College London

d.stephens@imperial.ac.uk

http://stats.ma.ic.ac.uk/∼das01/

24th January 2006

David A. Stephens Statistical Inference and Methods



Random Number Generation
Markov Chain Sampling

Monte Carlo Methods
Sequential Monte carlo

Stochastic Optimization

Part V

Session 5: Simulation Methods

David A. Stephens Statistical Inference and Methods



Random Number Generation
Markov Chain Sampling

Monte Carlo Methods
Sequential Monte carlo

Stochastic Optimization

Session 5: Simulation Methods 1/ 87

Random Number Generation

Monte Carlo

Importance Sampling

Markov chain Monte Carlo

Stochastic Optimization

David A. Stephens Statistical Inference and Methods



Random Number Generation
Markov Chain Sampling

Monte Carlo Methods
Sequential Monte carlo

Stochastic Optimization

Session 5: Simulation Methods 2/ 87

Modern statistics has been revolutionized by the advent of
increased computing power. This has facilitated the analysis of
data and models that could not have been considered previously.

random number generation and its uses

simulation-based inference

computer-generated modelling and analysis
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Simulation in Statistical Inference: Simulation plays an
important role in many areas of statistical inference

Bootstrap estimation of standard errors

Compute parameter estimates for observed data
Re-sample “new” data set from observed data
Re-compute estimate
Repeat to produce large “sample” of estimates
Estimate variance of estimator (standard error) from this
sample
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Randomization/Permutation Testing

Compute test statistic for observed data
Re-sample “new” data set under Null Hypothesis
Re-compute estimate for permuted/randomized samples
Repeat to produce large “sample” of test statistics
Compute p-values on the basis of the estimated null
distribution given by this sample.
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Bayesian Inference

Bayesian Inference/Decision Making requires integration
Rather than computing integrals analytically, produce sample
from posterior distributions, and estimate the required integrals
Summarize posterior via posterior samples
Sample from posterior predictive distribution for forecasting
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Many of the important tasks in computational statistics centre on
the generation of random numbers from different probability
distributions. Thus we need to be able to

produce streams of uniform random variates

devise methods of converting them to non-uniform variates
from standard distributions

seek extensions to non-standard, possibly complicated
multivariate ones distributions.

utilize the variates to perform numerical approximation tasks.
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Uniform Random Numbers

The first task is to produce a stream of uniform random numbers.
Without using actual mechanical experimentation (coin tossing,
selecting balls from bags etc.) this is not possible, so instead we
produce pseudorandom numbers, that is, numbers that appear to
be randomly generated, but are in fact produced by some
deterministic system

There are many different methods of pseudorandom generation

linear congruential generation

recursive generators

linear shift generators
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Linear congruential generator: consider the sequence of real
values {un} defined recursively by

un+1 = aun + c modm

where u0 is user-specified.

By judicious choice of the constants (a, c ,m) the sequence of
numbers produced by the recursion appears as if it is a stream of
random numbers uniformly distributed on the set
{0, 1, 2, ...,m − 1}.
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For example, can choose

a = 1366, c = 150889, and m = 714025

a = 16807, c = 0 and m = 231 − 1 = 2147483647.

Can also combine different streams additively (for example, the
Wichman-Hill algorithm)

For pseudorandom variates from interval (0, 1), use {un/m}.
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Transformation Methods

The simplest method of generation from standard distributions is
the method of transformation. This exploits fundamental results
relating the standard distributions. For example

U ∼ Uniform(0, 1) X = − log U =⇒ X ∼ Exponential (1)

or

Z ∼ N(0, 1) X = Z 2 =⇒ X ∼ Chisquared (1) .

By using summation methods, other random variables can be
generated

Z1, ...,ZK ∼ N(0, 1) X =
K∑

i=1

Z 2
i =⇒ X ∼ Chisquared (K ) .
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An important general simulation technique is cdf inversion. If a
random variable has cumulative distribution function (cdf) F , so
that

P [X ≤ x ] = F (x)

(that is, F (x) is a known non-decreasing function of x , taking
values between 0 and 1), and U ∼ Uniform(0, 1), then it can be
shown that

X = F−1 (U)

is a random variable with cdf F .
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For example, if X ∼ Exponential (λ)

F (x) = 1− e−λx x > 0

and thus

F−1 (x) = − 1

λ
log (1− x)

so we can generate an exponential random variate by taking a
uniform random variate u and returning − log (1− u) /λ.
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NOTES:

works completely generally, for any FX

F−1 (the “inverse cdf”) function may not be available
analytically. For example, if X ∼ N

(
µ, σ2

)
F (x) =

∫ x

−∞

1√
2πσ2

exp

{
− 1

2σ2
(t − µ)2

}
= Φ

(
t − µ

σ

)
does not yield an inverse function.
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F−1 may not be a 1-1 function, that is, for a given u such
that 0 < u < 1

x = F−1 (u)

may not have a unique solution. This is the case if X is a
discrete variable (Binomial , Poisson etc.)
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Transformation techniques also used for multivariate generation.
For example, suppose

U1 ∼ Uniform (0, 1) U2 ∼ Uniform (0, 1)

and consider the transformation to

Z1 =
√
−2 log U1 cos (2πU2) Z2 =

√
−2 log U1 sin (2πU2) .

Then it follows that

Z1 ∼ N (0, 1) Z2 ∼ N (0, 1) .

This is the Box-Muller method of random number generation.
(Z1,Z2) are independent normal variables, but dependent,
non-standard variables can be subsequently generated using a
location-scale linear transformation
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Rejection

Rejection sampling is a method of producing random variates from
a non-standard distribution.

Suppose we wish to generate a variate from a pdf f , and suppose
that another probability density g from which random variates can
be readily generated, such that f (x)/g(x) is bounded on X

f (x)

g(x)
≤ M < ∞

say, for s. Then it is possible to produce a sample from f by
generating a variate from g , and then only accepting it as a variate
from f if a certain test is passed.
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Rejection Algorithm:

1 Generate x from g

2 Generate u from Uniform(0, 1) independently of x

3 Compute

t =
uMg(x)

f (x)

If t ≤ 1,

accept x as a variate from f
STOP

If t > 1,

reject x ,
return to 1

David A. Stephens Statistical Inference and Methods



Random Number Generation
Markov Chain Sampling

Monte Carlo Methods
Sequential Monte carlo

Stochastic Optimization

Session 5: Simulation Methods 18/ 87

NOTES:

the probability of acceptance is

1

M

and hence the expected number of generations before
acceptance is M.

the smaller M is, the higher the acceptance rate is, and the
algorithm is more efficient

if g resembles f , then the algorithm is more efficient

can be improved by adaptation of g in light of the rejected
points (adaptive rejection) or by pre-testing/squeezing

works for multivariate distributions
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Markov Chain Sampling

Markov chain sampling from probability distributions uses ideas
from applied probability to generate random variables. They are
especially useful for sampling from complicated or high-dimensional
probability distributions.

The key idea is that a Markov chain is a recursive scheme that
generates a random sequence of states using elementary simulation
methods, but where the next state is generated conditional on the
current state.
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Depending on how the next state is generated, it can be proved
that, eventually, the proportion of time spent in each the states
settles down to some equilibrium.

This equilibrium, invariant, or stationary probability distribution
depends only on the mechanism of transition from state-to-state.
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Basic Markov Chain Theory

Consider a set of states (s1, ..., sK ) and the sequence of random
variables {Xn : n ≥ 1} where, for each n, Xn = sk for some k.
Suppose that

P [Xn+1 = sj |Xn = si ] = pij

for each n; this defines the conditional probability of moving from
state i to state j at step n.
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Combining all of the conditional probabilities into a K × K matrix,
we have

P =


p11 p12 · · · p1K

p21 p22 · · · p2K
...

...
. . .

...
pK1 pK2 · · · pKK


where the rows or matrix P sum to 1.
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The matrix P is sufficient to specify the Markov chain. Given an
initial state X0 = x0, we successively generate from the conditional
distributions defined by the rows of P, and obtain the sequence
{xn : n ≥ 1}. For example, if Xn = si , then

Xn+1 =


s1 with probability pi1

s2 with probability pi2
...

...
sK with probability piK
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The important question now is what happens to the sequence
{xn : n ≥ 1} in the long run, that is how does the relative frequency

Ti (N1 + 1,N2)

N2 − N1
=

Number of times Xn takes the value si for N1 + 1 ≤ n ≤ N2

N2 − N1

behave for N1 < N2 large ?
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Formally, we can find the equilibrium or steady-state distribution of
the Markov chain, denoted π = (π1, ..., πK )T, by solving the
system of equations

π = Pπ

for P. This can be done either using the usual methods for solving
linear systems, or using eigendecompositions, or simply by looking
at the n step ahead transition probabilities given by

P × P × ...× P = Pn

as n →∞. We then have that, for fixed large N1

Ti (N1 + 1,N1 + n)

n
→ πi

that is, the sample relative frequency of being in state i converges
to πi .
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EXAMPLE : Suppose K = 3 and

P =


1
3

1
6

1
2

1
8

1
8

3
4

1
2 0 1

2


Then

P100 =

 0.4038 0.0769 0.5192
0.4038 0.0769 0.5192
0.4038 0.0769 0.5192


so that π = (0.4038, 0.0769, 0.5192)T.

Thus, in the long run, the chain spends 40.38% of time in state 1,
7.69% of time in state 2 and 51.92% of time in state 3.

David A. Stephens Statistical Inference and Methods



Random Number Generation
Markov Chain Sampling

Monte Carlo Methods
Sequential Monte carlo

Stochastic Optimization

Session 5: Simulation Methods 27/ 87

The method described above can be used to produce
approximately independent samples from the equilibrium
distribution; to do this the Markov chain is run forward in time,
recursively, and after an initial burn-in period of N1 steps, every r th

value is collected. That is, the values

{xN1+rn : n ≥ 1}

are deemed to be an approximately independent sample from the
discrete distribution π.
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Notes:

burn-in is necessary so that the chain “forgets” where it
started from, and moves into the stationary phase

“r−thinning” is needed to remove dependence between the
samples inherent in the Markovian scheme

often, N1 ≤ 1000 and r = 10− 50 is quite sufficient.
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For the example above

N1

[
PN1

]
11

N1

1 0.3333 6 0.4038
2 0.3819 7 0.4039
3 0.4077 8 0.4038
4 0.4046 9 0.4038
5 0.4037 10 0.4038

where
[
PN1

]
11

is the (1, 1) element of PN11 . This illustrates that
convergence to the stationary distribution can be quite rapid.
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Continuous State-Space Markov Chains

The theory above extends (reasonably straightforwardly) to
continuous state spaces, that is, the countable state set {s1, ..., sK}
is replaced by a continuum of possible values, denoted as above X.

In this case, instead of having a transition matrix, we have a
transition kernel

P (x ,B)
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P (x ,B) determines the probability of making the transition from
current value x into the set B ⊂ X in any given step.

We retain the discrete time nature of the Markov chain, and again
consider outcome sequences {x1, x2, ..., xn, ...}).

Usually, the transitions are implemented using a transition density

p (x , y) ≡ p (x → y)

which specifies a conditional probability density in y , given the
current value x , for x , y ∈ X.
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The equilibrium distribution π of the continuous state space model
satisfies

π(x)p (x , y) = π (y) p (y , x)

and given p, we can, in theory solve for π.

However, in the context of sampling from probability distributions
as detailed in earlier sections, this is not the problem, we are
required to solve. We wish to specify π, and then find a p such
that its equilibrium distribution is π.

This looks like a hard problem to solve. Fortunately, there is a
prescribed method that works for general π.
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The Metropolis-Hastings Algorithm

Let Q be any transition kernel suitable for moving (exhaustively)
around X, with associated transition density q such that

q (x , y) > 0

for all x , y (in fact, this can be relaxed to the condition that
requires Qn (x , y) > 0 for all x , y ∈ X, separated by n steps in the
chain).
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Then, for y 6= x , define

p (x , y) = q (x , y) α (x , y)

where

α (x , y) = min

{
1,

π (y)

π (x)

q (y , x)

q (x , y)

}
defines an acceptance probability for the move from x to y .
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Under this transition kernel P with transition density p, if the
current state of the chain at step n is xn = x , then the next value
of the chain is either some new value xn+1 = y , generated from
the conditional density q (x , y), or the current value xn+1 = x . We
call y the candidate state.

Thus, starting from the nth step when xn = x , we have the
following algorithm for implementing the continuous state space
Markov chain:
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1 Generate candidate y from the conditional density q (., .)
given x

2 Compute α (x , y)

3 Generate u from Uniform (0, 1)

if u ≤ α (x , y), accept the move to y and set xn+1 = y
if u > α (x , y), reject the move to y and set xn+1 = x

4 Return to 1 to generate xn+2..

This is the Metropolis-Hastings algorithm
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Metropolis Algorithm

The general algorithm above has some special cases of interest. If
q is chosen such that

q (x , y) = q (y , x)

so that q is symmetric in its arguments, then

α (x , y) = min

{
1,

π (y)

π (x)

}
and the move to y is accepted with certainty if the target
probability density at y is higher than at x .
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A simple symmetric transition density has

Y |Xn = x ∼ N
(
x , σ2

q

)
Choosing σ2

q small encourages many small moves; this is the
original Markov chain algorithm, known as the Metropolis
Algorithm.

Many such ”local” moves can be proposed. Note that it is
important to respect any parameter constraints in the proposal.
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Independence Metropolis-Hastings

Another common choice is the independence Metropolis-Hastings
algorithm, where

q (x , y) = q (y)

that is, independent of the current value of the chain. This still
defines a Markov chain as

p (x , y) = q (y) α (x , y)

still depends on x through α (x , y), and there is a probability that
this chain does not move at each step.
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An good independence Markov chain (that traverses X quickly) is
more difficult to construct without knowledge of π.

However, if π can be well-approximated by a density q (as in
rejection sampling), then this method can work well.
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Gibbs Sampler

The Metropolis-Hastings algorithm above is valid for both
univariate and multivariate probability distributions, but is more
complicated in high dimensions.

The objective is to choose a transition density q that moves
around the space X quickly, which means that we wish to have the
acceptance probability reasonably large.

In high dimensions, this is often difficult to achieve.
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The Gibbs Sampler algorithm attempts to solve this problem by
breaking down a high-dimensional problem into several lower
dimensional problems that are solved iteratively and simultaneously.

Suppose that π is a probability density in K dimensions, and let
the variables be denoted

(
X 1, ...,XK

)
.
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Define the conditional density of X k given(
X 1, ...,X k−1,X k+1, ...XK

)
πk

(
xk ; x (k)

)
=

π
(
x1, ..., xK

)
π (x1, ..., xk−1, xk+1, ...xK )

∝ π
(
x1, ..., xK

)
where the denominator is the marginal distribution of X (k), the
K − 1 variables excluding X k ,

The Gibbs Sampler utilizes this set of K conditional distributions to
construct a Markov chain on the support of the joint distribution.
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It is implemented using the following algorithm:

1 Set a vector of starting values for the K variables
(
x1
0 , ..., xK

0

)
.

2 Sample in turn from the conditional distributions πk

(
xk ; x (k)

)
as follows

(a) sample x1
1 from π1

(
x1; x2

0 , x3
0 , ..., xK

0

)
(b) sample x2

1 from π2

(
x2; x1

1 , x3
0 , ..., xK

0

)
(c) sample x3

1 from π3

(
x3; x1

1 , x1
1 , ..., xK

0

)
...

(K) sample xK
1 from πK

(
x2; x1

1 , x1
1 , ..., xK−1

1

)
3 Return to 2 (a), and repeat to obtain, at step n, the sampled

variates
(
x1
n , x2

n , ..., xK
n

)
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This Markov chain defines, in steps 2(a)-2(K), a means of
updating the vector xn to vector xn+1. Each of the steps can be
achieved using direct sampling from the conditional distribution if
that is possible, but can also involve individual Metropolis-Hastings
steps, with acceptance probabilities

αk (x , y) = min

{
1,

πk

(
y ; x (k)

)
πk

(
x ; x (k)

) qk (y , x)

qk (x , y)

}
for k = 1, ...,K .

Finally, these steps can be achieved with the scalar variables
X 1,...,XK or with these components as vector variables; deciding
on which blocks of variables to update simultaneously is often a
key issue.
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Key Issues And Extensions

Convergence Assessment

Designing Algorithms

Adaptive Schemes & Delayed Rejection

Utilizing Auxiliary Variables

Variable Dimension Algorithms

Perfect Sampling
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Example: Stochastic Volatility Model

A simple stochastic volatility model for time-varying variance is
based on an AR(1) state-space model.

For observable time series data {yt , t = 1, . . . ,T} (e.g.
log-returns), we have

Yt = exp{ht/2}ut

ht = µ + φ(ht−1 − µ) + vt

where {ut} and {vt} are (independent) Gaussian processes, with
variances 1 and σ2 respectively. Require |φ| < 1 for stationarity of
the second (state) equation.
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Parameters are

State Equation Parameters (µ, φ, σ2)

States {h1, . . . , hT}
Bayesian solution requires computation of the posterior distribution
for the unknown parameters

π(µ, φ, σ2, h1, . . . , hT |y)

which is exceptionally high-dimensional.

Other solutions equally difficult to implement
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MCMC Solution Consider Gibbs sampler Strategy.

Must sample from following full conditionals:

π(µ|φ, σ2,h, y)

π(φ|µ, σ2,h, y)

π(σ2|µ, φ,h, y)

π(ht |φ, σ2,h(t), y), t = 1, . . . ,T .
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Likelihood:

L(h) =

(
1

2π

)T/2 T∏
t=1

exp

{
−1

2

[
ht + e−hty2

t

]}
Priors: Let θ = (µ, φ, σ2)

p(θ)

p(h|θ) = p(h1|θ)
∏T

t=2 p(ht |ht−1,θ), where

p(ht |ht−1,θ) =

(
1

2πσ

)1/2

exp

{
− 1

2σ2
(ht − µ− φ(ht−1 − µ)2

}
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For example, full conditional for ht given by

π(ht |φ, σ2,h(t), y) ∝ L(h)π(ht |φ, σ2, ht−1, ht+1, y)

∝ Lt(ht)p(ht |ht−1,θ)p(ht+1|ht ,θ)

where

Lt(ht) = exp

{
−1

2

[
ht + e−hty2

t

]}
This is a non-standard distribution. Can be sampled using rejection
sampling, or a proposal using a Metropolis-Hastings type proposal
can be used.
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Key Issue: Convergence

convergence can be slow due to slow mixing

high autocorrelation in sampled values

can use special strategies

reparameterization
sampling θ as a vector
blocking the elements of h, that is, sampling the vector of
states (hs+1, . . . , hs+b) conditional on the other parameters,
for some pair (s, b)
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Monte Carlo Integration

Suppose we want to compute the integral

I =

∫
g(x)dx

which is known to be finite, but is not analytically tractable.
Numerical methods (trapezium rule, quadrature) are often
available, but if the integral high-dimensional, these methods may
be inaccurate.
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An alternative method is to regard this integral as an expectation
with respect to some probability distribution with density fX

I =

∫
g(x)

f (x)

f (x)
dx =

∫
g(x)

f (x)
f (x) dx = Ef

[
g(X )

f (X )

]
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This suggests a suitable method of approximation. If x1, ..., xN , is
a large sample of observed values from the distribution fX then a
key statistical result (The Law of Large Numbers) relates the
observed sample mean to the expectation with respect to fX , that
is,

x → EfX [X ]

as N →∞.
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By a simple extension

1

N

N∑
i=1

g(xi )

f (xi )
→ Ef

[
g(X )

f (X )

]
= I

suggesting an estimate

Î =
1

N

N∑
i=1

g(xi )

f (xi )
.

This is the basic Monte Carlo method of integration.
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The Monte Carlo Method is used in many fields of application. Its
principal use is in the calculation on expected values:

in probability and statistics, for computing moments of
distributions

in statistics, for computing properties of estimates (the
bootstrap, confidence intervals etc.)

in finance, for computing Option Prices

forward simulation of underlying asset to time T
empirical calculation of the value of the option at time 0

in engineering, for carrying out risk assessment
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Importance Sampling

Importance sampling is a modified form of Monte Carlo
approximation. Suppose we wish to compute the expected value of
function g with respect to f

If (g) =

∫
g(x)f (x)dx
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Then we may re-write this as an expectation with respect to
another density h

If (g) =

∫
g(x)f (x)

h (x)

h (x)
dx =

∫
g(x)f (x)

h (x)
h (x) dx

= Eh

[
g(X )f (X )

h (X )

]
which may then be approximated using standard Monte Carlo as

Î
(h)
f (g) =

1

N

N∑
i=1

g(xi )f (xi )

h (xi )
.

where x1, ..., xN are random samples from h.
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This method may produce a more efficient method of estimation of
If (g) than that given by the usual Monte Carlo estimate

Îf (g) =
1

N

N∑
i=1

g(xi )

where x1, ..., xN are random samples from g .

Choice of the function h needs some care
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Sequential Monte Carlo

Recall basic Monte Carlo approach for Bayesian problems:

Consider the problem of calculating

I =

∫
E

h(x)π(x)dx (1)

We assume that

π(x) = f (x)/Z

where Z =
∫
E f (x)dx < ∞ is unknown and f may be

evaluated pointwise.

Typically I is of high dimension, cannot be accurately
evaluated.
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Monte Carlo:

The basic idea is to draw iid x1, . . . , xN samples from π and
use the estimate:

1

N

N∑
i=1

h(x i ) −→
∫

E
h(x)π(x)dx .

Monte Carlo integration provides a ‘dimension free’ way to
estimate the integral, at the cost of simulating from a high
dimensional distribution.

A major drawback, especially in Bayesian statistics, is that we
are unable to draw independent samples from π.
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Importance Sampling:

Suppose that we have a probability density q(x) > 0 ∀x ∈ E ,
that we are able to simulate from.

The idea of IS is to use the samples from q and reweight
them, so we can estimate (1). That is:

I =

∫
E

h(x)w(x)q(x)dx

where w(x) = π(x)/q(x) is the importance weight.
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We then use the estimate

1

N

N∑
i=1

h(x i )w(x i ) −→
∫

E
h(x)π(x)dx

with x1, . . . , xN drawn from q.
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Problems with IS

Since π is only known up to proportionality we cannot
evaluate w . This is easily dealt with, by using the estimate:

Î =

∑N
i=1 h(x i )w(x i )∑N

i=1 w(x i )
−→

∫
E

h(x)π(x)dx .

However, the variance of the estimate is

Var
(̂
I
)
∝ 1 + Varq

(
w(X )

)
which can be infinite if we are unable to find a suitable q
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So why use IS?

In rare event simulation, it can often be difficult to s
imulate a rare event from the original density of interest,
but may be achieved using a suitable q and correcting via
IS.

Secondly, an important area of MCMC methodology is
adaptive methods, that is to adapt the transition kernel to
improve the performance of the algorithm.

Finally, we can easily use the method for parallel
simulation.
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Sequential Importance Sampling

Suppose we have a sequence of densities {πt} with πt ≡ π,
with increasing dimension. Consider also a sequence of
corresponding q’s q0, . . . , qt of the form:

qn(x0:n) = qn(xn|x0:n−1)qn−1(x0:n−1) n = 0, . . . , t

where x0:n = (x0, . . . , xn), q−1 = 1, qn(x0:n) > 0 ∀x ∈ Tn and
E =

∏t
n=0 Tn.

The idea is to draw x1
0 , . . . , xN

0 from q0 and weight according
to the first density:

w0(x
i
0) =

π0(x
i
0)

q0(x i
0)

i = 1, . . . ,N.
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To use the samples for the next density sample x i
1 from

q1(·|x i
0) and calculate the incremental weight:

ω1(x
i
0:1) =

π1(x
i
0:1)

π0(x i
0)q1(x i

1|x i
0)

taking the new weights as w1(x
i
0:1) = ω1(x

i
0:1)w0(x

i
0). We

continue in this way until ‘time’ t is reached.

The idea is to build up a sample, by attempting to solve
smaller dimensional problems. That is, to sidestep the
difficulty of selecting a single q.
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Drawback of SIS:

The fundamental difficulty of SIS is that as time proceeds, the
weights will have a tendency to degenerate to 0, except for a
single sample (or particle) which dominates Monte Carlo
estimates; this is called weight degeneracy.

Indeed, the particle with the largest weight may not even be
relevant for estimation as it is only the ‘best’ particle wrt the
others that have been sampled (the population).
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Selection:

One way to deal with the weight degeneracy problem is to use
selection or resampling.

The most basic way in which this is achieved is the
multinomial approach; this is performed by sampling, with
replacement, N particles with probabilities proportional to the
weights, we then reset all of the weights to 1 (selection is
taken as proxy for a draw from the current target density as
will be explained later).

The idea is to remove the lowest weighted particles and
replicate the highest weighted particles with the hope that
samples in the future will lie in regions of high density wrt
target πn.
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Sequential Monte Carlo

We now have some idea about SIS and selection, which are
key ingredients of SMC samplers.

The approach of SMC samplers is to use SIS, selection and
Markov chain Monte Carlo methods to simulate from our
target distribution π.

Consider the below picture. We want to draw from the
density with the full line, but may be difficult; it is far easier
to draw, sequentially, from the flattest density and reweight
for the next etc.
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Sequence of mixture densities

x

de
ns

ity

-200 -100 0 100 200

0.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0
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SMC Samplers: Basic Idea

Suppose now that {πt} is a sequence of densities so that
π0, . . . , πt−1 approach, in some sense, π.

For example, on the previous slide we had πj(x) ∝ π(x)ζ j

0 ≤ ζ j ≤ 1.

Basic idea: Generate N particles from initial distribution η0

and weight according to π0:

w0(x
i
0) =

π0(x
i
0)

η0(x
i
0)

.
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Now consider sampling x i
1 from some Markov kernel K1(x

i
0, ·)

and reweighting as in SIS:

ω1(x
i
0:1) =

π1(x
i
1)η(x i

0)

π0(x i
0)

∫
E η(x)K1(x , x i

1)dx
. (2)

Drawback: Cannot typically evaluate the integral in (2).

Solution: Extend state space and create an auxiliary
distribution π̃1 which admits marginal π1.

New incremental weight (assuming it is well defined):

ω1(x
i
0:1) =

π̃1(x
i
0:1)

π0(x i
0)K1(x i

0, x
i
1)

.

David A. Stephens Statistical Inference and Methods



Random Number Generation
Markov Chain Sampling

Monte Carlo Methods
Sequential Monte carlo

Stochastic Optimization

Session 5: Simulation Methods 75/ 87

Continue in this way, i.e. define π̃2 with marginal π2 and
sample particles from K2 and then define a π̃4 etc, so at time
t we target π̃t which has π as a marginal.

Could select π̃n is to use:

π̃n(x0:j) = πn(xn)
n−1∏
k=0

Lk(xk+1, xk)

where {Lt−1} are a sequence of backwards Markov kernels.
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Reasons to use SMC Samplers:

For many difficult problems (e.g. mixtures) MCMC samplers
fail to sample the state space efficiently with extremely poor
mixing properties.

SMC samplers can improve upon such approaches by allowing
samples to interact via resampling and allowing a large
number of strategies that are prohibited in MCMC; may use
time adaptive and non-reversible kernels in SMC, or
stratification approaches.

Our experience with SMC samplers suggest that it is
preferable to MCMC in many cases.
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Quasirandom Monte Carlo

The Monte Carlo methods described above concentrate on
pseudorandom samples from some density f (or h). By definition,
these samples are (pseudo) randomly distributed around the
support of the probability density.

However, it can be shown that, for certain types of integral, it is
better to have a deterministically even distribution of points
around the support of the density, in that the Monte Carlo
approximation error is smaller in that case.
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Thus it may be preferable to use quasirandom (low discrepancy)
samples rather than pseudorandom samples. There are several
well-known methods of placing points optimally in high-dimensions

Faure sequences

Halton sequences

Sobol sequences
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500 Points
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Stochastic Optimization

Optimization is a key topic in many areas of statistics. A generic
problem is to minimize (or maximize) some lower (upper) bounded
objective function of a vector of variables; that is we seek

x∗ = arg min
x

φ (x)

for objective function φ of K variables x.
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The most common approach to optimization in mathematics is to
use calculus; we would seek solutions to the K equations

∂φ (x)

∂xk
= 0 k = 1, ...,K

to find a turning point of the function. If K is large, or the
function φ is complicated, these equations may be difficult to
solve.
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Simulation-based methods offer a potential solution. Suppose we
wish to minimize the function φ. First, we define a probability
distribution via φ as follows. Let

πT (x) ∝ exp

{
− 1

T
φ (x)

}
= {exp {−φ (x)}}1/T = {π1 (x)}1/T

for some fixed constant T , so that minimizing φ equates to
maximizing πT .
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The Metropolis-Hastings approach described above can be used to
find high probability density regions that correspond to regions
within which φ is minimized.

Furthermore, however, the Metropolis-Hastings approach can be
used to find a global maximum/minimum if the algorithm is
implemented over a slowly changing value of T , that is, if we
slowly let T → 0, then the density function would become more
concentrated around its maximum.
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The Metropolis algorithm is modified as follows.

Set T = T0 � 1, and X1 = x0 = x

Propose move to candidate point X1 = x1 = y via q.

Accept the move to y with probability

α0 (x , y) = min

{
1,

πT0 (y)

πT0 (x)

q (y , x)

q (x , y)

}
otherwise set X1 = x1 = x .
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Set T = T1 < T0

Return to 2. and 3 with acceptance probability αn (x , y) with
πT0 (.) replaced by πTn (.) in the above formula at step n,
where

T0 > T1 > T2 > ... > Tn

such that Tn → 0 as n →∞.
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If this scheme is used, then the values eventually sampled from the
chain are not samples from any of the families of probability
distributions

πTn (.)

but is rather a sample from the vicinity of the mode of the
distribution.

The parameter T is known as the temperature, and this scheme is
referred to as simulated annealing.

A logarithmic “cooling” scheme is suitable, so that

1

T
= a log(1 + bn)
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