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1. (a) (i) Let Ω be a set, and F be a set of subsets of Ω such that

· Ω ∈ F
· F ∈ F =⇒ F ′ ∈ F (closed under complementation)

· If {Fn} is a countable collection of elements of F , then
⋃
n

Fn ∈ F (closed under

countable union)

so that F is a sigma-algebra. A non-negative (set) function υ acting on F is a measure
if it has the following property: for any countable collection of elements of F , {Fn}, we
have

υ

(⋃
n

Fn

)
≤

∑
n

υ (Fn)

with equality if {Fn} are disjoint sets. Then

· the pair (Ω,F) is a measurable space

· the triple (Ω,F , υ) is a measure space

Finally, if υ (Ω) = 1, then υ is a probability measure, (Ω,F , υ) is a probability space.
4 MARKS

(ii) Let (Ω,F , υ) denote the measure space. If ψ is a simple function then it takes the following
form: for ω ∈ Ω

ψ (ω) =
k∑

i=1

aiIAi (ω)

where k is a non-negative integer, a1, ..., ak are constants, and A1, ..., Ak are (measurable)
disjoint subsets of Ω, that is, they are elements F .

2 MARKS

The Lebesgue-Stieltjes integral of ψ with respect to υ is denoted and defined by

∫
ψdυ =

k∑

i=1

aiυ (Ai) .

2 MARKS

Finally let Sf denote the set of simple functions defined by

Sf = {ψ : 0 ≤ ψ (ω) ≤ f (ω) for all ω ∈ Ω} .

Then ∫
fdυ = sup

ψ∈Sf

∫
ψdυ

2 MARKS

SEEN

(b) The Wald theorem proves the strong consistency of the MLE, whereas the Cramer theorem
proves the asymptotic normality of the MLE (or indeed any sequence of consistent solutions to
the likelihood equation), that is, if θ0 is the true value of the parameter θ in the probability
model fX (x; θ), then

θ̃n
a.s.→ θ0 gives

√
n

(
θ̃n − θ0

) L→ Z ∼ N
(
0, [I (θ0)]

−1
)

For the Wald Theorem, regularity conditions (for the cases seen by the students) include the
compactness of the parameter space Θ, the (upper-semi) continuity of the density in θ for all
x, the boundedness of the function

U (x, θ) = log fX (x; θ)− log fX (x; θ0)

the uniform measurability of the density with respect to x on an open neighbourhood of any
θ ∈ Θ, and the identifiability of the density with respect to θ. For the Cramer theorem, we
need the Θ to be an open subset of R, existence and boundedness of second partial derivatives
(third derivatives for weakly consistent solutions), the positive-definiteness of the expectation
of the matrix Ψ of second partial derivatives, and identifiability.

4 MARKS
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(c) (i) We have
L (θ, η) = η2θ exp {− [ηx + θηy]} x, y > 0

so that
l (θ, η) = log L (θ, η) = 2 log η + log θ − (ηx + θηy)

and
∂l

∂η
=

2
η
− x− θy

∂l

∂θ
=

1
θ
− ηy

∂2l

∂η2
= − 2

η2

∂2l

∂θ2 = − 1
θ2

∂2l

∂η∂θ
= −y

yielding the observed and Fisher information

I (θ, η) =




2
η2

y

y
1
θ2


 I (θ, η) =




2
η2

1
ηθ

1
ηθ

1
θ2




as E [Y ] = 1/ (ηθ).
4 MARKS

(ii) The parameters are not orthogonal as the off-diagonal element of I (θ, η) is non-zero.
2 MARKS

SEEN TECHNIQUE
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2. (a) (i) {Xn} converges almost surely to a limiting random variable X if

P
[{

ω : lim
n→∞

Xn (ω) = X (ω)
}]

= 1

that is, the set of ω for which Xn (ω) → X (ω) has P -measure one. Equivalently,

Xn
a.s.→ X ⇐⇒ P

[
lim

n→∞
|Xn −X| < ε

]
= 1

for all ε > 0.

2 MARKS

SEEN

(ii) THEOREM
Let {Ak} be a sequence of events in sample space Ω. If

A(S) =
∞⋂

k=1

∞⋃

j=k

Aj

is the limsup event of the infinite sequence; A(S) occurs if any only if infinitely many of
the Ajs occur, or the Ajs occur infinitely often (i.o.)

(I) If
∞∑

k=1

P (Ak) < ∞, then P
(
A(S)

)
= P (Aj occurs i.o.) = 0,

(II) If the events {Ak} are independent, and
∞∑

k=1

P (Ak) = ∞, then P
(
A(S)

)
= 1.

PROOF (I) Note first that

∞∑

k=1

P (Ak) < ∞ =⇒ lim
k→∞

∞∑

j=k

P (Aj) = 0.

because if the sum on the left-hand side is bounded above, then the sum on the right-hand
side tends to zero as k →∞. Now, for every k ≥ 1,

A(S) =
∞⋂

k=1

∞⋃

j=k

Aj ⊆
∞⋃

j=k

Aj

and therefore, as k −→∞

P
(
A(S)

)
≤ P




∞⋃

j=k

Aj


 ≤

∞∑

j=k

P (Aj) → 0

(II) Consider K ≥ k, and the union of events

A =
K⋃

j=k

Aj .

Then

A
′
=

K⋂

j=k

A′j ⊆
∞⋃

j=k

A′j

Now

P (A) = P




K⋃

j=k

Aj


 ≤ P




∞⋃

j=k

Aj


 .
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Therefore

1− P




∞⋃

j=k

Aj


 ≤ 1− P




K⋃

j=k

Aj


 = 1− P (A) = P (A′) = P




K⋂

j=k

A′j




=
K∏

j=k

P
(
A′j

)
by independence

=
K∏

j=k

(1− P (Aj)) ≤ exp



−

K∑

j=k

P (Aj)





as 1 − x ≤ exp{−x} for 0 < x < 1. Now, taking the limit of both sides as K → ∞, for
fixed k,

1− P




∞⋃

j=k

Aj


 ≤ lim

K→∞
exp



−

K∑

j=k

P (Aj)



 = exp



−

∞∑

j=k

P (Aj)



 = 0

as, by assumption
∞∑

k=1

P (Ak) = ∞. Thus, for each k, we have that

P




∞⋃

j=k

Aj


 = 1 ∴ lim

k→∞
P




∞⋃

j=k

Aj


 = 1.

By continuity of probability measure

lim
k→∞

P (Ak) = P

(
lim

k→∞
Ak

)
= P

( ∞⋂

k=1

Ak

)
= P




∞⋂

k=1

∞⋃

j=k

Aj


 = P

(
A(S)

)

HenceP
(
A(S)

)
= 1.

This result is related to almost sure convergence; if we let

Aj (ε) ≡ {ω : |Xj (ω)−X (ω)| < ε}
then if Aj occurs i.o. we have a.s. convergence of {Xn} to X.

12 MARKS

SEEN

(b) (i) Let An be the event (Xn 6= 0). Then P (An) = 1/n, and hence

∞∑
n=1

P (An) = ∞.

The events A1, A2, . . . are independent, so by the BC Lemma part (II),

P (An occurs i.o) = 1,

so Xn does not converge a.s. to 0. Xn only takes values in {0, 1}, and P [Xn = 0] > 0
for any finite n, so Xn does not converge to 1 a.s. either. Hence Xn does not converge
a.s. to any real value.

3 MARKS

(ii) We have

E [|Xn|] = E
[
I[0,n−1) (Un)

]
= P

[
Un ≤ n−1

]
=

1
n

so
Xn

r=1→ XB

where P [XB = 0] = 1, and we have convergence in rth mean to zero for r = 1.
3 MARKS

UNSEEN
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3. (a) THEOREM Let Fn(x) denote the empirical distribution function (edf) derived from an i.i.d.
sample X1, ..., Xn from a distribution with cdf FX , that is,

Fn(x) =
1
n

n∑

i=1

I[Xi,∞) (x) x ∈ R.

Then the edf converges almost surely to the true cdf, uniformly in x, that is

P

[
sup

x
|Fn(x)− FX(x)| → 0

]
= 1.

PROOF. First note that
Fn (x) a.s.→ FX(x)

pointwise for x ∈ R, by the Strong Law of Large numbers, by definition of Fn as the sample
mean of a collection of iid (indicator) random variables. Now let ε > 0 be specified, and choose
k > 1/ε, and numbers

−∞ = x0 < x1 ≤ x2 ≤ ... ≤ xk−1 < xk = ∞

such that

P [X < xj ] = FX

(
x−j

) ≤ j

k
≤ FX (xj) = P [X ≤ xj ]

for j = 1, 2, ..., k − 1. Note that if xj−1 < xj then FX

(
x−j

) − FX (xj−1) ≤ 1
k < ε. By the

Strong Law, as n →∞,

Fn (xj)
a.s.→ FX (xj) and Fn

(
x−j

) a.s.→ FX

(
x−j

)

for each j. Thus, also by the Strong Law, as n →∞,

4n = max
j

{|Fn(xj)− FX(xj)| ,
∣∣Fn(x−j )− FX(x−j )

∣∣} a.s.→ 0. (A3.1)

Let x ∈ R, and find j such that xj−1 ≤ x < xj . Then, as

x < xj =⇒ Fn (x) ≤ Fn

(
x−j

)
and FX (x) ≤ FX

(
x−j

)
,

by definition of the regular grid defined by the xjs,

Fn(x)− FX(x) ≤ Fn(x−j )− FX (xj−1)

≤ Fn(x−j )− FX

(
x−j

)
+ ε

and also

Fn(x)− FX(x) ≥ Fn(xj−1)− FX

(
x−j

)

≥ Fn(xj−1)− FX (xj−1)− ε.

Hence, for any such x,
|Fn(x)− FX(x)| ≤ 4n + ε

and the RHS converges almost surely to ε, by (A3.1). This result holds uniformly in x, so we
have

sup
x
|Fn(x)− FX(x)| a.s.→ ε

and hence the result follows, as the choice of ε > 0 is arbitrary.

12 MARKS

SEEN
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(b) For any p

p =
exp

1 + exp
=⇒ xp = log

(
p

1− p

)

and, here,

fX (x) =
d

dx
FX(x) =

ex

(1 + ex)2

so

fX (xp) =
p/(1− p)

(1 + p/(1− p))2
= p (1− p)

Now, from the Central Limit Theorem result for the sample quantiles, as n →∞,

√
n

((
X(k1)

X(k2)

)
−

(
xp1

xp2

))
→ Z ∼ N (0, Σ)

where

Σ =




p1 (1− p1)
fX(xp1)2

p1 (1− p2)
fX(xp1)fX(xp2)

p1 (1− p2)
fX(xp1)fX(xp2)

p2 (1− p2)
fX(xp2)2




=




p1 (1− p1)
(p1 (1− p1))

2

p1 (1− p2)
p1 (1− p1) p2 (1− p2)

p1 (1− p2)
p1 (1− p1) p2 (1− p2)

p2 (1− p2)
(p2 (1− p2))

2




=




1
p1 (1− p1)

1
(1− p1) p2

1
(1− p1) p2

1
p2 (1− p2)




Hence (
X(k1)

X(k2)

)
∼ AN

((
xp1

xp2

)
,
1
n

Σ
)

.

8 MARKS

SEEN TECHNIQUE
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4. (a) The Kullback-Liebler (KL) divergence between two probability measures that have densities f0

and f1 with respect to measure υ is defined as

K (f0, f1) =
∫

f0(x) log
f0(x)
f1(x)

dυ(x) = Ef0

[
log

f0(x)
f1(x)

]

2 MARKS

(b) Using Jensen’s Inequality on the convex function − log x

−K (f0, f1) = Ef0

[
− log

f0(x)
f1(x)

]
= Ef0

[
log

f1(x)
f0(x)

]

≤ log Ef0

[
f1(x)
f0(x)

]
= log

{∫
f1(x)
f0(x)

f0(x)dυ(x)
}

.

≤ log
{∫

S0

f1(x)dυ(x)
}
≤ log 1 = 0

where S0 is the support of f0, with equality if
∫

S0
f1(x)dυ(x) = 1. Hence K (f0, f1) ≥ 0.

6 MARKS

SEEN

(c) We have, for θ ∈ Θ

Tn =
1
n

log
Ln (θ0)
Ln (θ)

=
1
n

n∑

i=1

log
fX (Xi; θ0)
fX (Xi; θ)

and thus by the Strong Law of Large numbers

Tn
a.s→ Ef0

[
log

fX (Xi; θ0)
fX (Xi; θ)

]
= K (fθ0 , fθ)

and by the previous result K (fθ0 , fθ) = 0 ⇐⇒ θ = θ0

6 MARKS

SEEN TECHNIQUE

(d) (i)

K (f0, f1) =
∫ ∞

0

f0(x) log
f0 (x)
f1 (x)

dx =
∫ ∞

0

{
λ0e

−λ0x ×
[
log

λ0

λ1
+ (λ1 − λ0)x

]}
dx

= log
λ0

λ1
+ (λ1 − λ0)Ef0 [X] = log

λ0

λ1
+

(λ1 − λ0)
λ0

2 MARKS

(ii)

K (f0, f1) =
∫ ∞

0

f0(x) log
f0 (x)
f1 (x)

dx

=
∫ ∞

0

{
1

Γ (α0)
xα0−1e−x ×

[
log

Γ (α1)
Γ (α0)

+ (α1 − α0) log x

]}
dx

= log
Γ (α1)
Γ (α0)

+ (α1 − α0)Ef0 [log X]

= log
Γ (α1)
Γ (α0)

+ (α1 − α0)DiΓ (α0)

6 MARKS

UNSEEN
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5. (a) THEOREM (Following the notation and proof of Bernardo and Smith (1994))

If X1, X2, ... is an infinitely exchangeable sequence of 0-1 variables with probability measure P ,
then there exists a distribution function Q such that the joint mass function of (X1, X2, ..., Xn)
has the form

p (X1, X2, ..., Xn) =
∫ 1

0

{
n∏

i=1

θXi (1− θ)1−Xi

}
dQ (θ)

where

Q (θ) = lim
n→∞

P

[
Yn

n
≤ θ

]

and Yn =
n∑

i=1

Xi, and θ = lim
n→∞

Yn/n is the (strong-law) limiting relative frequency of 1s.

PROOF By exchangeability, for 0 ≤ yn ≤ n

P [Yn = yn] =
(

n

yn

)
p (x1, x2, ..., xn) =

(
n

yn

)
p

(
xπ(1), xπ(2), ..., xπ(n)

)
(A5.0)

where Xi = xi and yn =
n∑

i=1

xi, and π () is any permutation of the indices. For finite N , let

N ≥ n ≥ yn ≥ 0. Then, by exchangeability

P [Yn = yn] =
∑

P [Yn = yn|YN = yN ] P [YN = yN ] (A5.1)

where the summation extends over (yn, ..., N − (n− yn)) . Now the conditional probability
P [Yn = yn|YN = yN ] is a hypergeometric mass function

P [Yn = yn|YN = yN ] =

(
yN

yn

)(
N−yN

n−yn

)
(
N
n

) 0 ≤ yn ≤ n.

Rewriting the binomial coefficients, we have

P [Yn = yn] =
(

n

yn

) ∑ (yN )yn
(N − yN )n−yn

(N)n

P [YN = yN ] (A5.2)

where (x)r = x (x− 1) (x− 2) ... (x− r + 1).

Define function QN (θ) on R as the step function which is zero for θ < 0, and has steps of
size P [YN = yN ] at θ = yN/N for yN = 0, 1, 2, ..., N . Hence, utilizing the Lebesgue-Stieltjes
notation, we can re-write

P [Yn = yn] =
(

n

yn

) ∫ 1

0

(θN)yn
((1− θ) N)n−yn

(N)n

dQN (θ) . (A5.3)

This result holds for any finite N , but in (A5.1) we need to consider N →∞. In the limit,

(θN)yn
((1− θ)N)n−yn

(N)n

→ θyn (1− θ)n−yn =
n∏

i=1

θxi (1− θ)1−xi

as (x)r → xr if x →∞ with r fixed. Also, by the Helly Theorem {QN (θ)} has a convergent
subsequence

{
QNj (θ)

}
such that, for a distribution function Q,

lim
j→∞

QNj (θ) = Q (θ)

Thus the result follows comparing (A5.0) and the limiting form of (A5.3) the result follows.

12 MARKS

SEEN
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(b) For 1 ≤ m ≤ n

p (Xm+1, X2, ..., Xn|X1, X2, ..., Xm) =
p (X1, X2, ..., Xn)
p (X1, X2, ..., Xm)

(A5.4)

=
∫ 1

0

{
n∏

i=m+1

θXi (1− θ)1−Xi

}
dQ (θ|X1, ..., Xm)

where, if

Q (θ) =
∫ θ

0

dQ (t)

we have

dQ (θ|X1, ..., Xm) =

m∏
i=1

θXi (1− θ)1−Xi dQ (θ)
∫ 1

0

m∏
i=1

θXi (1− θ)1−Xi dQ (θ)

as the updated “prior” measure. Hence, if Yn−m =
n∑

i=m+1

Xi, we have from (A5.4)

p (Yn−m|X1, ..., Xm) =
∫ 1

0

(
n−m

yn−m

)
θYn−m (1− θ)(n−m)−Yn−m dQ (θ|X1, ..., Xm)

which identifies Q (θ|X1, ..., Xm) as the limiting posterior predictive distribution, as from (A5.4)
and the representation theorem itself

lim
n→∞

[
Yn−m

n−m

]
= Q (θ|X1, ..., Xm)

8 MARKS

SEEN
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