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M3/M4S3 STATISTICAL THEORY II

THE GLIVENKO-CANTELLI LEMMA

Definition : The Empirical Distribution Function
Let X1, . . . , Xn be a collection of i.i.d. random variables with cdf FX . Then the empirical
distribution function will be denoted Fn(x), and defined for x ∈ R by

Fn(x) =
1
n

n∑

i=1

I[Xi,∞)(x)

where IA(ω) is the indicator function for set A.

If data x1, . . . , xn are available, then the observed or estimated empirical distribution function is
denoted F̂n(x) and defined by

F̂n(x) =
1
n

n∑

i=1

I[xi,∞)(x).

Note that for any fixed x ∈ R, the Strong Law of Large Numbers ensures that

Fn(x) a.s.−→ FX(x) as n −→∞

as
E[I[Xi,∞)(x)] = P [I[Xi,∞)(x) = 1] = P [Xi ≤ x] = FX(x).

This result is strengthened by the following Theorem.

Theorem 1.9 The Glivenko-Cantelli Theorem
Let X1, . . . , Xn be a collection of i.i.d. random variables with cdf FX , and let Fn(x) denote the
empirical distribution function. Then, as n −→∞,

P

[
sup
x∈R

|Fn(x)− FX(x)| −→ 0
]

= 1

or equivalently

P

[
lim

n−→∞ sup
x∈R

|Fn(x)− FX(x)| = 0
]

= 1.

that is, the convergence is uniform in x.

Proof. Let ε > 0. Then fix k > 1/ε, and then consider “knot” points κ0, . . . , κk such that

−∞ = κ0 < κ1 ≤ κ2 ≤ . . . ≤ κk−1 < κk = ∞

that define a partition of R into k disjoint intervals such that

FX(κ−j ) ≤ j

k
≤ FX(κj) j = 1, . . . , k − 1

where, for each j,
FX(κ−j ) = P [Xj < κj ] = FX(κj)− P [X = κj ].

Then, by construction, if κj−1 < κj ,

FX(κ−j )− FX(κj−1) ≤ j

k
− (j − 1)

k
=

1
k

< ε.
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Recall in the following that Fn(x) is a random quantity. Now, by the Strong Law, we have
pointwise convergence, so that, as n −→∞, for j = 1, . . . , k − 1.

Fn(κj)
a.s.−→ FX(κj) and Fn(κ−j ) a.s.−→ FX(κ−j ).

Then it immediately follows that, for each j,

|Fn(κ−j )− FX(κ−j )| a.s.−→ 0 and |Fn(κ−j )− FX(κ−j )| a.s.−→ 0

as n −→∞, so looking at the maximum over all j,

4n = max
j=1,...,k−1

{
|Fn(κj)− FX(κj)| , |Fn(κ−j )− FX(κ−j )|

}
a.s.−→ 0 as n −→∞.

For any x, find the interval within which x lies, that is, identify j such that

κj−1 ≤ x < κj .

Then we have

Fn(x)− FX(x) ≤ Fn(κ−j )− FX(κj−1) ≤ Fn(κ−j )− FX(κ−j ) + ε

Fn(x)− FX(x) ≥ Fn(κj−1)− FX(κ−j ) ≥ Fn(κj−1)− FX(κj−1)− ε

and thus for any x,

Fn(κj−1)− FX(κj−1)− ε ≤ Fn(x)− FX(x) ≤ Fn(κ−j )− FX(κ−j ) + ε

and thus
|Fn(x)− FX(x)| ≤ 4n + ε

a.s.−→ ε as n −→∞.

Hence, as this holds for arbitrary x, it follows that

sup
x∈R

|Fn(x)− FX(x)| a.s.−→ ε as n −→∞.

This holds for every ε > 0; that is, if Aε denotes the set of ω on which this convergence is
observed, then P (Aε) = 1, and then by definition

A ≡
⋂

ε>0

Aε ≡ lim
ε−→0

Aε =⇒ P (A) = P
(

lim
ε−→0

Aε

)
= lim

ε−→0
P (Aε) = 1

and it follows that

P

[
lim

n−→∞ sup
x∈R

|Fn(x)− FX(x)| = 0
]

= 1.


