M3/M4S3 STATISTICAL THEORY II THE GLIVENKO-CANTELLI LEMMA

Definition : The Empirical Distribution Function

Let X_{1}, \ldots, X_{n} be a collection of i.i.d. random variables with cdf F_{X}. Then the empirical distribution function will be denoted $F_{n}(x)$, and defined for $x \in \mathbb{R}$ by

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[X_{i}, \infty\right)}(x)
$$

where $I_{A}(\omega)$ is the indicator function for set A.
If data x_{1}, \ldots, x_{n} are available, then the observed or estimated empirical distribution function is denoted $\widehat{F}_{n}(x)$ and defined by

$$
\widehat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x)
$$

Note that for any fixed $x \in \mathbb{R}$, the Strong Law of Large Numbers ensures that

$$
F_{n}(x) \xrightarrow{\text { a.s. }} F_{X}(x) \quad \text { as } n \longrightarrow \infty
$$

as

$$
E\left[I_{\left[X_{i}, \infty\right)}(x)\right]=P\left[I_{\left[X_{i}, \infty\right)}(x)=1\right]=P\left[X_{i} \leq x\right]=F_{X}(x)
$$

This result is strengthened by the following Theorem.

Theorem 1.9 The Glivenko-Cantelli Theorem

Let X_{1}, \ldots, X_{n} be a collection of i.i.d. random variables with cdf F_{X}, and let $F_{n}(x)$ denote the empirical distribution function. Then, as $n \longrightarrow \infty$,

$$
P\left[\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F_{X}(x)\right| \longrightarrow 0\right]=1
$$

or equivalently

$$
P\left[\lim _{n \longrightarrow \infty} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F_{X}(x)\right|=0\right]=1
$$

that is, the convergence is uniform in \boldsymbol{x}.
Proof. Let $\epsilon>0$. Then fix $k>1 / \epsilon$, and then consider "knot" points $\kappa_{0}, \ldots, \kappa_{k}$ such that

$$
-\infty=\kappa_{0}<\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{k-1}<\kappa_{k}=\infty
$$

that define a partition of \mathbb{R} into k disjoint intervals such that

$$
F_{X}\left(\kappa_{j}^{-}\right) \leq \frac{j}{k} \leq F_{X}\left(\kappa_{j}\right) \quad j=1, \ldots, k-1
$$

where, for each j,

$$
F_{X}\left(\kappa_{j}^{-}\right)=P\left[X_{j}<\kappa_{j}\right]=F_{X}\left(\kappa_{j}\right)-P\left[X=\kappa_{j}\right]
$$

Then, by construction, if $\kappa_{j-1}<\kappa_{j}$,

$$
F_{X}\left(\kappa_{j}^{-}\right)-F_{X}\left(\kappa_{j-1}\right) \leq \frac{j}{k}-\frac{(j-1)}{k}=\frac{1}{k}<\epsilon
$$

Recall in the following that $F_{n}(x)$ is a random quantity. Now, by the Strong Law, we have pointwise convergence, so that, as $n \longrightarrow \infty$, for $j=1, \ldots, k-1$.

$$
F_{n}\left(\kappa_{j}\right) \xrightarrow{\text { a.s. }} F_{X}\left(\kappa_{j}\right) \quad \text { and } \quad F_{n}\left(\kappa_{j}^{-}\right) \xrightarrow{\text { a.s. }} F_{X}\left(\kappa_{j}^{-}\right) .
$$

Then it immediately follows that, for each j,

$$
\left|F_{n}\left(\kappa_{j}^{-}\right)-F_{X}\left(\kappa_{j}^{-}\right)\right| \xrightarrow{\text { a.s. }} 0 \quad \text { and } \quad\left|F_{n}\left(\kappa_{j}^{-}\right)-F_{X}\left(\kappa_{j}^{-}\right)\right| \xrightarrow{\text { a.s. }} 0
$$

as $n \longrightarrow \infty$, so looking at the maximum over all j,

$$
\triangle_{n}=\max _{j=1, \ldots, k-1}\left\{\left|F_{n}\left(\kappa_{j}\right)-F_{X}\left(\kappa_{j}\right)\right|,\left|F_{n}\left(\kappa_{j}^{-}\right)-F_{X}\left(\kappa_{j}^{-}\right)\right|\right\} \xrightarrow{\text { a.s. }} 0 \quad \text { as } n \longrightarrow \infty
$$

For any x, find the interval within which x lies, that is, identify j such that

$$
\kappa_{j-1} \leq x<\kappa_{j} .
$$

Then we have

$$
\begin{aligned}
& F_{n}(x)-F_{X}(x) \leq F_{n}\left(\kappa_{j}^{-}\right)-F_{X}\left(\kappa_{j-1}\right) \leq F_{n}\left(\kappa_{j}^{-}\right)-F_{X}\left(\kappa_{j}^{-}\right)+\epsilon \\
& F_{n}(x)-F_{X}(x) \geq F_{n}\left(\kappa_{j-1}\right)-F_{X}\left(\kappa_{j}^{-}\right) \geq F_{n}\left(\kappa_{j-1}\right)-F_{X}\left(\kappa_{j-1}\right)-\epsilon
\end{aligned}
$$

and thus for any x,

$$
F_{n}\left(\kappa_{j-1}\right)-F_{X}\left(\kappa_{j-1}\right)-\epsilon \leq F_{n}(x)-F_{X}(x) \leq F_{n}\left(\kappa_{j}^{-}\right)-F_{X}\left(\kappa_{j}^{-}\right)+\epsilon
$$

and thus

$$
\left|F_{n}(x)-F_{X}(x)\right| \leq \triangle_{n}+\epsilon \xrightarrow{\text { a.s. }} \epsilon \quad \text { as } n \longrightarrow \infty .
$$

Hence, as this holds for arbitrary x, it follows that

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F_{X}(x)\right| \xrightarrow{\text { a.s. }} \epsilon \quad \text { as } n \longrightarrow \infty .
$$

This holds for every $\epsilon>0$; that is, if A_{ϵ} denotes the set of ω on which this convergence is observed, then $P\left(A_{\epsilon}\right)=1$, and then by definition

$$
A \equiv \bigcap_{\epsilon>0} A_{\epsilon} \equiv \lim _{\epsilon \longrightarrow 0} A_{\epsilon} \quad \Longrightarrow \quad P(A)=P\left(\lim _{\epsilon \longrightarrow 0} A_{\epsilon}\right)=\lim _{\epsilon \longrightarrow 0} P\left(A_{\epsilon}\right)=1
$$

and it follows that

$$
P\left[\lim _{n \longrightarrow \infty} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F_{X}(x)\right|=0\right]=1
$$

