M3S3/S4 STATISTICAL THEORY II

MULTIVARIATE NORMAL DISTRIBUTION: MARGINALS AND CONDITIONALS

Suppose that vector random variable $\underset{\sim}{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{\top}$ has a multivariate normal distribution with pdf given by

$$
\begin{equation*}
f_{\underset{X}{ }}(\underset{\sim}{x})=\left(\frac{1}{2 \pi}\right)^{k / 2} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}{\underset{\sim}{x}}^{\top} \Sigma^{-1} \underset{\sim}{x}\right\} \tag{1}
\end{equation*}
$$

where Σ is the $k \times k$ variance-covariance matrix (we can consider here the case where the expected value $\underset{\sim}{\mu}$ is the $k \times 1$ zero vector; results for the general case are easily available by transformation).

Consider partitioning $\underset{\sim}{X}$ into two components $\underset{\sim}{X}$ and $\underset{\sim}{X}$ 解 dimensions d and $k-d$ respectively, that is,

$$
\underset{\sim}{X}=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] .
$$

We attempt to deduce
(a) the marginal distribution of $\underset{\sim}{X}$, and
(b) the conditional distribution of $\underset{\sim}{X}$ given that $\underset{\sim}{X}=\underset{\sim}{x}$.

First, write

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

where Σ_{11} is $d \times d, \Sigma_{22}$ is $(k-d) \times(k-d), \Sigma_{21}=\Sigma_{12}^{\top}$, and

$$
\Sigma^{-1}=V=\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]
$$

so that $\Sigma V=I_{k}$ (I_{r} is the $r \times r$ identity matrix) gives

$$
\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]=\left[\begin{array}{cc}
I_{d} & 0 \\
0 & I_{k-d}
\end{array}\right]
$$

and more specifically the four relations

$$
\begin{align*}
& \Sigma_{11} V_{11}+\Sigma_{12} V_{21}=I_{d} \tag{2}\\
& \Sigma_{11} V_{12}+\Sigma_{12} V_{22}=0 \tag{3}\\
& \Sigma_{21} V_{11}+\Sigma_{22} V_{21}=0 \tag{4}\\
& \Sigma_{21} V_{12}+\Sigma_{22} V_{22}=I_{k-d} . \tag{5}
\end{align*}
$$

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as

$$
\begin{equation*}
{\underset{\sim}{x}}^{\top} \Sigma^{-1} \underset{\sim}{x}={\underset{\sim}{x}}^{\top} V_{11} x_{1}+{\underset{\sim}{x}}_{\top}^{\top} V_{12}{\underset{\sim}{x}}_{2}+{\underset{\sim}{x}}_{2}^{\top} V_{21} x_{1}+{\underset{\sim}{x}}_{2}^{\top} V_{22}{\underset{x}{2}}^{2} . \tag{6}
\end{equation*}
$$

In order to compute the marginal and conditional distributions, we must complete the square in ${\underset{\sim}{2}}_{2}$ in this expression. We can write

$$
\begin{equation*}
{\underset{\sim}{x}}^{\boldsymbol{\top}} \Sigma^{-1} \underset{\sim}{x}=\left({\underset{\sim}{x}}_{2}-\underset{\sim}{m}\right)^{\top} M\left({\underset{\sim}{x}}_{2}-\underset{\sim}{m}\right)+\underset{\sim}{c} \tag{7}
\end{equation*}
$$

and by comparing with equation (6) we can deduce that, for quadratic terms in ${\underset{\sim}{2}}_{2}$,

$$
\begin{equation*}
{\underset{2}{2}}^{\top} V_{22} x_{2}=x_{2}^{\top} M{\underset{x}{2}} \quad \therefore \quad M=V_{22} \tag{8}
\end{equation*}
$$

for linear terms

$$
\begin{equation*}
{\underset{\sim}{x}}_{2}^{\top} V_{21}{\underset{\sim}{x}}_{1}=-{\underset{\sim}{x}}_{2}^{\top} M \underset{\sim}{m} \quad \therefore \quad \underset{\sim}{m}=-V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1} \tag{9}
\end{equation*}
$$

and for constant terms

$$
\begin{equation*}
{\underset{\sim}{x}}_{1}^{\top} V_{11}{\underset{\sim}{x}}_{1}=\underset{\sim}{c}+{\underset{\sim}{m}}^{\top} M \underset{\sim}{m} \quad \therefore \quad \underset{\sim}{c}={\underset{\sim}{x}}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right){\underset{\sim}{x}}_{1} \tag{10}
\end{equation*}
$$

thus yielding all the terms required for equation (7), that is

$$
\begin{equation*}
{\underset{\sim}{x}}^{\top} \Sigma^{-1} \underset{\sim}{x}=\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)^{\top} V_{22}\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)+{\underset{\sim}{x}}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right){\underset{\sim}{x}}_{1}, \tag{11}
\end{equation*}
$$

which, crucially, is a sum of two terms, where the first can be interpreted as a function of $\underset{\sim}{x}$, given $\underset{\sim}{x}$, and the second is a function of $\underset{\sim}{x}$ only.

Hence we have an immediate factorization of the full joint pdf using the chain rule for random variables;

$$
\begin{equation*}
f_{\underset{\sim}{X}}(\underset{\sim}{x})=f_{{\underset{\sim}{X}}_{2}} \mid \underset{{\underset{\sim}{x}}_{1}}{ }\left({\underset{\sim}{x}}_{2} \mid{\underset{\sim}{x}}_{1}\right) f_{{\underset{\sim}{X}}_{1}}\left({\underset{\sim}{x}}_{1}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{{\underset{\sim}{X}}_{2}} \left\lvert\,{\underset{\sim}{X}}_{1}\left({\underset{\sim}{x}}_{2} \mid{\underset{\sim}{x}}_{1}\right) \propto \exp \left\{-\frac{1}{2}\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)^{\top} V_{22}\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)\right\}\right. \tag{13}
\end{equation*}
$$

giving that

$$
\begin{equation*}
{\underset{\sim}{X}}_{2} \mid \underset{\sim}{X}=\underset{\sim}{x}{\underset{\sim}{x}}^{\sim} \sim N\left(-V_{22}^{-1} V_{21} \underset{\sim}{x}, V_{22}^{-1}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{{\underset{\sim}{X}}_{1}}\left({\underset{\sim}{x}}_{1}\right) \propto \exp \left\{-\frac{1}{2}{\underset{\sim}{x}}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right){\underset{\sim}{x}}_{1}\right\} \tag{15}
\end{equation*}
$$

giving that

$$
\begin{equation*}
{\underset{\sim}{X}}_{1} \sim N\left(0,\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right)^{-1}\right) . \tag{16}
\end{equation*}
$$

But, from equation (3), $\Sigma_{12}=-\Sigma_{11} V_{12} V_{22}^{-1}$, and then from equation (2), substituting in Σ_{12},

$$
\Sigma_{11} V_{11}-\Sigma_{11} V_{12} V_{22}^{-1} V_{21}=I_{d} \quad \therefore \quad \Sigma_{11}=\left(V_{11}-V_{12} V_{22}^{-1} V_{21}\right)^{-1}=\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right)^{-1}
$$

Hence, by inspection of equation (16), we conclude that

$$
\begin{equation*}
{\underset{\sim}{X}}_{1} \sim N\left(0, \Sigma_{11}\right), \tag{17}
\end{equation*}
$$

that is, we can extract the Σ_{11} block of Σ to define the marginal variance-covariance matrix of $\underset{\sim}{X}$.
Using similar arguments, we can define the conditional distribution from equation (14) more precisely. First, from equation (3), $V_{12}=-\Sigma_{11}^{-1} \Sigma_{12} V_{22}$, and then from equation (5), substituting in V_{12}

$$
-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} V_{22}+\Sigma_{22} V_{22}=I_{k-d} \quad \therefore \quad V_{22}^{-1}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}=\Sigma_{22}-\Sigma_{12}^{\top} \Sigma_{11}^{-1} \Sigma_{12}
$$

Finally, from equation (3), taking transposes on both sides, we have that $V_{21} \Sigma_{11}+V_{22} \Sigma_{21}=0$. Then pre-multiplying by V_{22}^{-1}, and post-multiplying by Σ_{11}^{-1}, we have

$$
V_{22}^{-1} V_{21}+\Sigma_{21} \Sigma_{11}^{-1}=0 \quad \therefore \quad V_{22}^{-1} V_{21}=-\Sigma_{21} \Sigma_{11}^{-1}
$$

so we have, substituting into equation (14), that

$$
\begin{equation*}
{\underset{\sim}{X}}_{2} \mid \underset{\sim}{X}{ }_{1}=\underset{\sim}{x} 1 \sim N\left(\Sigma_{21} \Sigma_{11}^{-1}{\underset{\sim}{x}}_{1}, \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right) . \tag{18}
\end{equation*}
$$

Thus any marginal, and any conditional distribution of a multivariate normal joint distribution is also multivariate normal, as the choices of $\underset{\sim}{X}{ }_{1}$ and $\underset{\sim}{X}$ are arbitrary.

