M3S3/S4 STATISTICAL THEORY II POSITIVE DEFINITE MATRICES

Definition: Positive Definite Matrix

A square, $p \times p$ symmetric matrix A is positive definite if, for all $x \in \mathbb{R}^{p}$,

$$
x^{\top} A x>0
$$

Properties: Suppose that A

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 p} \\
a_{21} & a_{22} & \cdots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{p 1} & a_{p 2} & \cdots & a_{p p}
\end{array}\right]
$$

is a positive definite matrix.

1. The $r \times r(1 \leq r \leq p)$ submatrix A_{r},

$$
A_{r}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 r} \\
a_{21} & a_{22} & \cdots & a_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
a_{r 1} & a_{r 2} & \cdots & a_{r r}
\end{array}\right]
$$

is also positive definite.
2. The p eigenvalues of $A, \lambda_{1}, \ldots, \lambda_{p}$ are positive. Conversely, if all the eigenvalues of a matrix B are positive, then B is positive definite.
3. There exists a unique decomposition of A

$$
\begin{equation*}
A=L L^{\top} \tag{1}
\end{equation*}
$$

where L is a lower triangular matrix

$$
L=\left[l_{i j}\right]=\left[\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
l_{21} & l_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{p 1} & l_{p 2} & \cdots & l_{p p}
\end{array}\right]
$$

Equation (1) gives the Cholesky Decomposition of A.
4. There exists a unique decomposition of A

$$
\begin{equation*}
A=S S \tag{2}
\end{equation*}
$$

where S can be denoted $A^{1 / 2} . S$ is the matrix square root of A.
5. There exists a unique decomposition of A

$$
\begin{equation*}
A=V D V^{\top} \tag{3}
\end{equation*}
$$

where

$$
D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{p}
\end{array}\right]
$$

is the diagonal matrix composed of the eigenvalues of A, and V is an orthogonal matrix

$$
V^{\top} V=1
$$

Equation (3) gives the Singular Value Decomposition of A.
6. As $A=V D V^{\top}$,

$$
|A|=\left|V D V^{\top}\right|=|V|\left|D \| V^{\top}\right|=|V|^{2}|D|=|D|>0
$$

as

$$
|V|=1 \quad \text { and } \quad|D|=\prod_{i=1}^{p} \lambda_{i}>0
$$

by 2 and 5 .
7. By $6 .$, as $|A|>0, A$ is non-singular, that is, the inverse of A, A^{-1} exists such that

$$
A A^{-1}=A^{-1} A=\mathbf{1}
$$

In fact

$$
A^{-1}=\left(V D V^{\top}\right)^{-1}=V D^{-1} V^{\top}
$$

as

$$
V^{-1}=V^{\top}
$$

8. A^{-1} is positive definite.
9. For $x \in \mathbb{R}^{p}$,

$$
\min _{1 \leq i \leq p} \lambda_{i} \leq \frac{x^{\top} A x}{x^{\top} x} \leq \max _{1 \leq i \leq p} \lambda_{i}
$$

10. If A and B are positive definite, then
(i) $|A+B| \leq|A|+|B|$.
(ii) If $A-B$ is positive definite, $|A|>|B|$.
(iii) $B^{-1}-A^{-1}$ is positive definite.
