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HIGHER ORDER PROPERTIES OF GMM AND GENERALIZED
EMPIRICAL LIKELIHOOD ESTIMATORS

BY WHITNEY K. NEWEY AND RICHARD J. SMITH1

In an effort to improve the small sample properties of generalized method of mo-
ments (GMM) estimators, a number of alternative estimators have been suggested.
These include empirical likelihood (EL), continuous updating, and exponential tilting
estimators. We show that these estimators share a common structure, being members
of a class of generalized empirical likelihood (GEL) estimators. We use this structure
to compare their higher order asymptotic properties. We find that GEL has no asymp-
totic bias due to correlation of the moment functions with their Jacobian, eliminating
an important source of bias for GMM in models with endogeneity. We also find that EL
has no asymptotic bias from estimating the optimal weight matrix, eliminating a further
important source of bias for GMM in panel data models. We give bias corrected GMM
and GEL estimators. We also show that bias corrected EL inherits the higher order
property of maximum likelihood, that it is higher order asymptotically efficient relative
to the other bias corrected estimators.

KEYWORDS: GMM, empirical likelihood, bias, higher order efficiency, stochastic ex-
pansions.

1. INTRODUCTION

IN AN EFFORT TO IMPROVE the small sample properties of GMM, a num-
ber of alternative estimators have been suggested. These include the empir-
ical likelihood (EL) estimator of Owen (1988), Qin and Lawless (1994), and
Imbens (1997), the continuous updating estimator (CUE) of Hansen, Heaton,
and Yaron (1996), and the exponential tilting (ET) estimator of Kitamura and
Stutzer (1997) and Imbens, Spady, and Johnson (1998). As shown by Smith
(1997), EL and ET share a common structure, being members of a class of
generalized empirical likelihood (GEL) estimators. We show that the CUE is
also a member of this class as are estimators from the Cressie and Read (1984)
power divergence family of discrepancies. All of these estimators and GMM
have the same asymptotic distribution but different higher order asymptotic
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properties. We use the GEL structure, which helps simplify calculations and
comparisons, to analyze higher order properties like those of Nagar (1959).
We derive and compare the (higher order) asymptotic bias for all of these esti-
mators. We also derive bias corrected GMM and GEL estimators and consider
their higher order efficiency.

We find that EL has two theoretical advantages. First, its asymptotic bias
does not grow with the number of moment restrictions, while the bias of GMM
often does. Consequently, with many moment conditions the bias of EL will be
less than the bias of GMM. This property is important in econometrics, where
many moment conditions are often used. For example, Hansen and Singleton
(1982), Holtz-Eakin, Newey, and Rosen (1988), and Abowd and Card (1989)
all use quite large numbers of moment conditions in their empirical work. The
relatively low asymptotic bias of EL indicates that it is an important alternative
to GMM in such applications. Furthermore, we show that under a symmetry
condition, which may be satisfied in some instrumental variable settings, all the
GEL estimators inherit the small bias property of EL. We provide intuition
for the bias results by interpreting EL as a GMM estimator where the linear
combination coefficients are efficiently estimated. Because of their efficiency
these coefficients are asymptotically uncorrelated with the moment conditions,
removing the primary source of asymptotic bias.

The second theoretical advantage of EL is that after it is bias corrected, using
probabilities obtained from EL, it is higher order efficient relative to other bias
corrected estimators. This property has a simple explanation. When the data
are discrete, having finite support, the nonparametric (one probability per ob-
servation, unknown cells) EL estimator is asymptotically equal to the paramet-
ric (one probability per cell) maximum likelihood estimator (MLE). Further-
more, the bias correction based on EL probabilities is identical to the discrete
data bias correction for the MLE. Consequently, for discrete data EL inher-
its the well known higher order efficiency of the MLE (e.g., see Rao (1963)
and Pfanzagl and Wefelmeyer (1978)). Then, since nothing in the higher order
variance depends on discreteness, this result extends to any distribution. More
precisely, by Lemma 3 of Chamberlain (1987) we can find a discrete distrib-
ution that matches all the moments that make up the higher order variances
of any two estimators, so the efficiency of bias corrected EL for the discrete
distribution implies efficiency for the true one.

Although the small bias property of EL is nice, there are methods of re-
moving all of the asymptotic bias. These include the bootstrap, as in Horowitz
(1998) for GMM, the jackknife, as in Kezdi, Hahn, and Solon (2001) for mini-
mum distance, and analytical methods, as in Hahn, Hausman, and Kuersteiner
(2001) for dynamic panel data. Here we give general analytical bias corrected
versions of GMM and GEL. The higher order efficiency of bias corrected EL
gives it a theoretical advantage over all the other bias corrected estimators.

It is also of interest to compare higher order efficiency when the full bias
correction is not used, so that EL need not be higher order efficient. We do
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this for estimators that improve asymptotic efficiency (relative to least squares)
under unknown heteroskedasticity, as considered in Amemiya (1983), Cham-
berlain (1982), and Cragg (1983). We impose auxiliary assumptions that give
zero bias for GMM and GEL, even though the estimated bias corrections are
not zero (so that EL is not higher order efficient), and compare higher order
variances. We find that with a Gaussian disturbance GEL and GMM have the
same higher order variances with many moments, but that with conditional
kurtosis, GMM is efficient relative to EL with thick tailed errors whereas EL
is better with thin tailed errors. This provides an example where there is no
bias concern, the only issue being efficiency, and where EL may not be best in
terms of MSE.

Some previous work on higher order properties of these estimators has been
done. Koenker et al. (1994) and Rilstone, Srivastava, and Ullah (1996) give
some higher order variance and bias calculations for special cases of GMM.
Corcoran (1998) showed that in a class of minimum discrepancy estimators, EL
has the only objective function that is Bartlett correctable. Rothenberg (1996)
showed that for a single equation of a Gaussian, homoskedastic linear simul-
taneous equations model, the asymptotic bias of EL is the same as the limited
information MLE and that a bias corrected EL is higher order efficient relative
to a bias corrected GMM estimator. Imbens and Spady (2001) showed in a spe-
cial model that the higher order MSE for GMM grows faster with the number
of moment conditions than for EL. We obtain bias formulae and corrections
for fully general GMM and GEL estimators and show EL has relatively small
bias and is higher order efficient after bias correction.

The outline of the paper is as follows. In Section 2 the model and estimators
are described, and new interpretations of some of the estimators are given.
Section 3 gives the asymptotic expansions on which the results are based, in-
cluding a new consistency result for GEL. Section 4 presents the results on
asymptotic bias. Bias corrected versions of GMM and GEL are given in Sec-
tion 5. Section 6 presents the results on higher order efficiency. Section 7 con-
cludes. Proofs are given in the Appendix.

2. THE MODEL AND ESTIMATORS

The model we consider is one with a finite number of moment restrictions.
To describe it, let zi (i= 1� � � � � n) be i.i.d. observations on a data vector z. Also,
let β be a p× 1 parameter vector and g(z�β) be an m× 1 vector of functions
of the data observation z and the parameter β, where m≥ p. The model has a
true parameter β0 satisfying the moment condition

E[g(z�β0)] = 0�

where E[�] denotes expectation taken with respect to the distribution of zi.
An important estimator of β is the two step GMM estimator of Hansen

(1982). To describe it, let gi(β)≡ g(zi�β), ĝ(β)≡ n−1
∑n

i=1 gi(β)� and Ω̂(β)≡
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n−1
∑n

i=1 gi(β)gi(β)
′. Also, let β̃ be some preliminary estimator, given by β̃=

arg minβ∈B ĝ(β)′Ŵ −1ĝ(β) where B denotes the parameter space, and Ŵ is a
random matrix with properties to be specified below. The GMM estimator we
consider is

β̂GMM = arg min
β∈B

ĝ(β)′Ω̂(β̃)−1ĝ(β)�(2.1)

We will compare the properties of this estimator to a class of alternative esti-
mators.

The alternatives to GMM we consider are generalized empirical likelihood
(GEL) estimators, as in Smith (1997, 2001). To describe GEL let ρ(v) be a
function of a scalar v that is concave on its domain, an open interval V con-
taining zero. Let Λ̂n(β) = {λ : λ′gi(β) ∈ V� i = 1� � � � � n}. The estimator is the
solution to a saddle point problem

β̂GEL = arg min
β∈B

sup
λ∈Λ̂n(β)

n∑
i=1

ρ(λ′gi(β))�(2.2)

The empirical likelihood (EL) estimator is a special case with ρ(v)= ln(1 − v)
and V = (−∞�1), as shown by Qin and Lawless (1994) and Smith (1997). The
exponential tilting (ET) estimator is a special case with ρ(v)= −ev, as shown
by Kitamura and Stutzer (1997) and Smith (1997).

It will be convenient to impose a normalization on ρ(v). Let ρj(v) =
∂jρ(v)/∂vj and ρj = ρj(0) (j = 0�1�2� � � �)�We normalize so that ρ1 = ρ2 = −1�
As long as ρ1 �= 0 and ρ2 < 0, which we will assume to be true, this normaliza-
tion can always be imposed by replacing ρ(v) by [−ρ2/ρ

2
1]ρ([ρ1/ρ2]v), which

does not affect the estimator of β. It is satisfied by the ρ(v) given above for EL
and ET.

The continuous updating estimator (CUE) of Hansen, Heaton, and Yaron
(1996) is also a GEL estimator as we now show. The CUE is analogous to
GMM except that the objective function is simultaneously minimized over β
in Ω̂(β)−1. It is given by

β̂CUE = arg min
β∈B

ĝ(β)′Ω̂(β)−ĝ(β)�(2.3)

where A− denotes any generalized inverse of a matrix A, satisfying
AA−A = A.2 The following result shows that this estimator is a GEL esti-
mator for quadratic ρ(v).

2The CUE of Hansen, Heaton, and Yaron (1996) actually minimizes Q̃(β) = ĝ(β)′[Ω̂(β) −
ĝ(β)ĝ(β)′]−1ĝ(β) rather than Q̂(β)= ĝ(β)′Ω̂(β)−1ĝ(β), but equality of the two estimators fol-
lows by Q̃(β)= Q̂(β)/[1 − Q̂(β)].
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THEOREM 2.1: If ρ(v) is quadratic, then β̂GEL = β̂CUE.

Associated with each GEL estimator are empirical probabilities for the ob-
servations. Because these probabilities are important for our analysis we give
a brief description. For a given function ρ(v), an associated GEL estimator β̂,
and ĝi = gi(β̂), they are

π̂i = ρ1(λ̂
′ĝi)

/ n∑
j=1

ρ1(λ̂
′ĝj) (i= 1� � � � � n)�(2.4)

where λ̂ = arg maxλ∈Λ̂n(β̂)
∑n

i=1 ρ(λ
′ĝi)/n. The empirical probabilities π̂i (i =

1� � � � � n) sum to one by construction, satisfy the sample moment condition∑n

i=1 π̂iĝi = 0 when the first order conditions for λ̂ hold, and are positive when
λ̂′ĝi is small uniformly in i. For EL they were given by Owen (1988), for ET by
Kitamura and Stutzer (1997), for quadratic ρ(v) by Back and Brown (1993),
and for the general case by Brown and Newey (1992); see also Smith (1997).
For any function a(z�β) and GEL estimator β̂ these can be used to form an ef-
ficient estimator

∑n

i=1 π̂ia(zi� β̂) ofE[a(z�β0)], as in Brown and Newey (1998).

2.1. Duality for GEL

Comparing GEL with another type of estimator helps explain the form of
the probabilities in equation (2.4) and connects our results with the existing
literature. Let h(π) be a convex function of a scalar π, and consider the esti-
mator

β̄= arg min
β∈B�π1�����πn

n∑
i=1

h(πi)� subject to(2.5)

n∑
i=1

πigi(β)= 0�
n∑
i=1

πi = 1�

This general class of minimum discrepancy (MD) estimators was formulated
by Corcoran (1998). Like GEL, this class also includes as special cases EL and
ET, where h(π) is − ln(π) and π ln(π) respectively.

For each MD estimator there is a dual GEL estimator when h(π) is a
member of the Cressie and Read (1984) family of discrepancies in which
h(π)= [γ(γ + 1)]−1[(nπ)γ+1 − 1]/n. To describe this result, note that the La-
grangian for MD is

L= 1
γ(γ+ 1)

n∑
i=1

[(nπi)γ+1 − 1]/n− α′
n∑
i=1

πigi(β)+µ

(
1 −

n∑
i=1

πi

)
�
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where α is an m× 1 vector of Lagrangian multipliers associated with the first
constraint and µ a scalar multiplier for the second constraint. Let π̄i, ᾱ, and µ̄
denote the solutions to the MD optimization problem, along with β̄. We inter-
pret expressions as limits for γ = 0 or γ = −1.

THEOREM 2.2: If g(z�β) is continuously differentiable in β, for some scalar γ

ρ(v)= −(1 + γv)(γ+1)/γ/(γ+ 1)�(2.6)

the solutions to equation (2.5) and (2.2) occur in the interior of B, λ̂ exists, and∑n

i=1 ρ2(λ̂
′ĝi)ĝiĝ′

i is nonsingular, then the first order conditions for GEL and MD
coincide for β̂= β̄, π̂i = π̄i (i= 1� � � � � n) and λ̂= ᾱ/(γµ̄) for γ �= 0 and λ̂= ᾱ
for γ = 0.

The duality between MD and GEL estimators is known for EL (γ = −1; Qin
and Lawless (1994)) and for ET (γ = 0; Kitamura and Stutzer (1997)), but is
new for the CUE (γ = 1) as well as for all the other members of the Cressie
and Read (1984) family. Duality is useful because it shows how the compu-
tationally less complex GEL estimators are related to MD estimators of the
Cressie–Read family, which has become a common standard for comparison
in the empirical likelihood literature (e.g., see Owen (2001)). Also, duality jus-
tifies the π̂i in equation (2.4) as MD estimates, which aids the interpretation of
the first order conditions of the estimators.

2.2. The First Order Conditions
Some interpretations of the first order conditions are useful for understand-

ing our asymptotic bias results. Let Gi(β)≡ ∂gi(β)/∂β. The GMM first order
conditions imply[

n∑
i=1

Gi(β̂GMM)
/
n

]′

Ω̂(β̃)−1ĝ(β̂GMM)= 0�(2.7)

We can also obtain an analogous expression for any GEL estimator β̂.3

Let k(v) = [ρ1(v) + 1]/v� v �= 0, and k(0) = −1. Also, let v̂i = λ̂′ĝi, k̂i =
k(v̂i)/

∑n

j=1 k(v̂j), and π̂i be as given in equation (2.4).

THEOREM 2.3: The GEL first order conditions imply[
n∑
i=1

π̂iGi(β̂)

]′[ n∑
i=1

k̂igi(β̂)gi(β̂)
′
]−1

ĝ(β̂)= 0�

where k̂i = π̂i for EL and k̂i = 1/n for CUE.

3Bonnal and Renault (2001) independently obtained a similar result for the CUE.
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In comparing the GMM and GEL first order conditions, we see that each can
be viewed as setting a linear combination of ĝ(β) equal to zero, but the linear
combination coefficients are estimated in different ways. GMM uses sample
averages while GEL uses an efficient estimator of the Jacobian term. Also EL
uses an efficient estimator of the second moments, CUE uses the sample av-
erage, and other GEL estimators use other weighted averages. An important
property of efficient moment estimators is that they are asymptotically uncor-
related with ĝ(β̂), eliminating correlations between corresponding terms in the
first order conditions, which are an important source of nonzero expectation
for the first order conditions, and hence of bias. Consequently, as we will show,
for GEL there will be no asymptotic bias from estimation of the Jacobian and,
furthermore, for EL there will also be no asymptotic bias from estimating the
second moments.4 We will also see that the absence of second moment bias
holds for any GEL estimator with ρ3 = −2, which can be explained by the fact
that k(v)= ρ1(v)+o(v) in this case, and hence k̂i is approximately equal to π̂i.

3. STOCHASTIC EXPANSION

We find the asymptotic bias and higher order variance using stochastic ex-
pansions for each estimator. Let F denote the distribution of z, ψ(z�F) a
function of z and F with E[ψ(z�F0)] = 0� and ψ̃ = ∑n

i=1ψ(zi�F0)/
√
n. Also

define a(z�F), ã, b(z�F), and b̃ analogously. For each estimator we derive an
expansion

√
n(β̂−β0)= ψ̃+Q1(ψ̃� ã�F0)/

√
n+Q2(ψ̃� ã� b̃�F0)/n+Rn�(3.1)

where Q1 is quadratic in its first two arguments, Q2 is cubic in its first three ar-
guments, and Rn =Op(n

−3/2). As discussed in Rothenberg (1984), valid higher
order bias and variance calculations can be based on the expectation and vari-
ance of the sum of the first three terms in this expansion. Under certain reg-
ularity conditions, including continuous distributions, this bias and variance
will coincide with those of an Edgeworth approximation to the distribution.
Furthermore, even when the data are discrete, so that an Edgeworth approx-
imation is not valid, these calculations can be used for higher order efficiency
comparisons, as in Pfanzagl and Wefelmeyer (1978). We also note that in the
Appendix we give a corresponding expansion for λ̂, which may be of inter-
est for the analysis of overidentifying moment tests, as in Imbens, Spady, and
Johnson (1998); see also Smith (1997, 2001).

Consistency and asymptotic normality are important prerequisites for sto-
chastic expansions, so we first briefly consider these properties for any GEL
estimator β̂. We make use of the following identification and regularity condi-
tion. Let Ω=E[gi(β0)gi(β0)

′].
4Donald and Newey (2000) previously discussed the absence of Jacobian bias for the CUE.
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ASSUMPTION 1: (a) β0 ∈ B is the unique solution to E[g(z�β)] = 0;
(b) B is compact; (c) g(z�β) is continuous at each β ∈ B with probability
one; (d) E[supβ∈B ‖g(z�β)‖α] < ∞ for some α > 2; (e) Ω is nonsingular ;
(f) ρ(v) is twice continuously differentiable in a neighborhood of zero.

This assumption requires the existence of slightly higher moments than con-
sistency for two step efficient GMM, as in Hansen (1982), but otherwise is the
same.

THEOREM 3.1: If Assumption 1 is satisfied, then β̂
p→ β0, ĝ(β̂) = Op(n

−1/2),
λ̂ = arg maxλ∈Λ̂n(β̂)

∑n

i=1 ρ(λ
′gi(β̂))/n exists with probability approaching one,

and λ̂=Op(n
−1/2).

This result is new in making no auxiliary assumption about β̂ or λ̂. Also, the
proof is based directly on the global concavity of ρ(v) and the saddle point
form of GEL. Additional conditions are needed for asymptotic normality. Let
G= E[∂gi(β0)/∂β].

ASSUMPTION 2: (a) β0 ∈ int(B); (b) g(z�β) is continuously differentiable in
a neighborhood N of β0 and E[supβ∈N ‖∂gi(β)/∂β′‖]<∞; (c) rank(G)= p.

Let Σ= (G′Ω−1G)−1, H = ΣG′Ω−1, and P =Ω−1 −Ω−1GΣG′Ω−1.

THEOREM 3.2: If Assumptions 1 and 2 are satisfied, then

√
n

(
β̂−β0

λ̂

)
d→N(0�diag(Σ�P))�

2n

[
n∑
i=1

ρ(λ̂′gi(β̂))
/
n− ρ0

]
d→ χ2(m−p)�

This result shows asymptotic normality of GEL estimators, and that, prop-
erly normalized, the saddle point objective function has a limiting chi square
distribution. This is an overidentification test statistic that was formulated by
Smith (1997). It is included here because we thought that this test statistic
might have independent interest.

Additional smoothness and moment conditions are needed for the stochastic
expansion. Let ∇j denote a vector of all distinct partial derivatives with respect
to β of order j.

ASSUMPTION 3: There is b(z) with E[b(zi)6]<∞ such that for 0 ≤ j ≤ 4 and
all z, ∇jg(z�β) exists on a neighborhood N of β0, supβ∈N ‖∇jg(z�β)‖ ≤ b(z),
and for each β ∈ N , ‖∇4g(z�β) − ∇4g(z�β0)‖ ≤ b(z)‖β − β0‖, ρ(v) is four
times continuously differentiable with Lipschitz fourth derivative in a neighbor-
hood of zero.
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Also, for the GMM estimator we need to specify conditions concerning the
initial weighting matrix Ŵ .

ASSUMPTION 4: There exists W and ξ(z) such that Ŵ =W + ∑n

i=1 ξ(zi)/n+
Op(n

−1), W is positive definite, E[ξ(zi)] = 0, and E[‖ξ(zi)‖6]<∞.

We derive the stochastic expansion for GMM using an auxiliary parame-
ter λ̂GMM that is analogous to that for GEL. Specifically, we consider GMM
first order conditions of the form

−
[

n∑
i=1

Gi(β̂GMM)
/
n

]′

λ̂GMM = 0� −ĝ(β̂GMM)− Ω̂(β̃)λ̂GMM = 0�(3.2)

This formulation simplifies calculations, because it removes the inverse matrix
from the first order conditions. A different way to do this was proposed by
Rilstone, Srivastava, and Ullah (1996). The next result shows that GMM has a
stochastic expansion.

THEOREM 3.3: If Assumptions 1–4 are satisfied, then equation (3�1) is satisfied
for the GMM estimator.

The final result of this section is the stochastic expansion for GEL.

THEOREM 3.4: If Assumptions 1–3 are satisfied, then equation (3�1) is satisfied
for the GEL estimator.

Expressions for each of the terms in the expansions of Theorems 3.3 and 3.4
are given in the respective proofs of these results because they are quite com-
plicated. Implicit in this result for GMM is that the expansion depends on the
preliminary estimator β̃ only through the limitW and influence function ξ(zi).
For example, all efficient GMM estimators that have been iterated at least
twice, so that Ŵ = Ω̂(β̄) and β̄ is itself an efficient GMM estimator, have the
same expansion. Also, similarly to Pfanzagl and Wefelmeyer (1978), Rothen-
berg (1984), and Robinson (1988), after three iterations that start at an initial√
n-consistent estimator, numerical procedures for solving the GEL first order

conditions will produce an estimator with the same leading three terms in the
expansion of equation (3.1).

4. ASYMPTOTIC BIAS

The asymptotic (higher order) bias formula is given by

Bias(β̂)= E[Q1(ψi� ai�F0)]/n�(4.1)
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with other terms in the expansion being O(n−2). To describe the precise form
of the bias we need some additional notation. Let HW = (G′W −1G)−1G′W −1,
Ωβj =E[∂{gi(β0)gi(β0)

′}/∂βj], a be an m× 1 vector such that

aj ≡ tr(ΣE[∂2gij(β0)/∂β∂β
′])/2 (j = 1� � � � �m)�(4.2)

where gij(β) denotes the jth element of gi(β), and ej the jth unit vector. For
GMM we have the following result:

THEOREM 4.1: If Assumptions 1–4 are satisfied, then

Bias(β̂GMM)= BI +BG +BΩ +BW �(4.3)

BI =H(−a+E[GiHgi])/n�
BG = −ΣE[G′

iPgi]/n�
BΩ =HE[gig′

iPgi]/n�

BW = −H
p∑
j=1

Ωβj(HW −H)′ej
/
n�

Each of the terms has an interesting interpretation. The first term BI is pre-
cisely the asymptotic bias for a GMM estimator with the optimal (asymptotic
variance minimizing; Hansen (1982)) linear combination G′Ω−1g(z�β). The
term BG arises from estimation of G. If Gi is constant as in minimum distance
estimation (see Section 4.2), BG = 0 but BG is generally nonzero whenever
there is endogeneity. Similarly the term BΩ arises from estimation of the sec-
ond moment matrix Ω. It is zero if third moments are zero, but is generally
nonzero. Both BG and BΩ will be zero with exact identification, where m= p,
because P is zero in this case. The term BW arises from the choice of prelimi-
nary estimator. It is zero if W is a scalar multiple of Ω. This result is consistent
with the Monte Carlo example of Hansen, Heaton, and Yaron (1996), where
multiple iterations on β̃ had little effect on bias.

We now turn to the bias formula for GEL.

THEOREM 4.2: If Assumptions 1–3 are satisfied, then

Bias(β̂GEL)= BI +
(

1 + ρ3

2

)
BΩ�

In comparison with the GMM bias, we find that BG and BW drop out, i.e.
there is no asymptotic bias from estimation of the Jacobian or from the pre-
liminary estimator. The absence of any bias from the preliminary estimator is
to be expected from the one step nature of the GEL estimator. Also, as noted
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in Section 2, the absence of bias from Jacobian estimation can be explained by
the presence of an efficient estimator of the Jacobian in the first order condi-
tions. In addition, as noted in Section 2, EL uses an efficient second moment
estimator, leading to the following result.

COROLLARY 4.3: If Assumptions 1–3 are satisfied, then

Bias(β̂EL)= BI�(4.4)

Thus, for EL the bias is exactly the same as for an estimator with moment
functions G′Ω−1g(z�β). This same property would be shared by any GEL es-
timator with ρ3 = −2. It will also be shared by any GEL estimator when third
moments are zero.

COROLLARY 4.4: If Assumptions 1–3 are satisfied and E[gig′
igij] = 0 (j =

1� � � � �m), then

Bias(β̂GEL)= Bias(β̂EL)= BI�(4.5)

This third moment condition will hold in an IV setting, when disturbances
are symmetrically distributed. When it does hold one can actually show some-
thing slightly stronger, that β̂GEL − β̂EL =Op(n

−3/2).
It is well known that, in overidentified linear models, estimation of the Jaco-

bian term is an important source of bias in IV estimators. Because the GMM
bias includes such effects but GEL does not, we expect that GEL will have rela-
tively small bias in such settings. Also, from Altonji and Segal (1996) we know
that, in covariance parameter models, estimation of Ω can be an important
source of bias in optimal minimum distance. Given that the EL bias does not
include this effect, we expect that it will have relatively small bias for minimum
distance. We can verify this intuition in some specific models.

4.1. Conditional Moment Restrictions

One important model that is useful for considering IV estimation involves a
conditional moment restriction. To describe this model, let u(z�β) be a scalar
residual satisfying

E[u(zi�β0)|xi] = 0�(4.6)

Consider moment conditions where g(z�β)= q(x)u(z�β) and q(x) is anm×1
vector of instrumental variables. To derive the bias, let ui = u(zi�β0), uβi =
∂u(zi�β0)/∂β, uββi = ∂2u(zi�β0)/∂β∂β

′, σ 2
i = E[u2

i |xi], and qi = q(xi). Also,
for σ 2

i > 0, let di =E[uβi|xi]/σ 2
i , κi = −E[uβiui|xi],

d̄i =G′Ω−1qi� Hi =E[uββi|xi]� µ3i =E[u3
i |xi]�

δi = Σ(κi + d̄iµ3i)/σ
2
i �
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THEOREM 4.5: If Assumptions 1–4 and equation (4�6) are satisfied and if
β̂GMM is a GMM estimator with W =Ω,

Bias(β̂EL)= −Σ(
E[d̄itr(ΣHi)]/2 +E[d̄id̄′

iΣκi]
)
/n�

Bias(β̂GEL)= Bias(β̂EL)+
(

1 + ρ3

2

)
BΩ� BΩ = ΣE[d̄iµ3iq

′
iPqi]/n�

Bias(β̂GMM)= Bias(β̂EL)+ΣE[κiq′
iPqi]/n+BΩ�

Also, if E[‖Hi‖2/σ 2
i ] < ∞, E[σ 2

i ‖di‖2] < ∞, and κi/σ 2
i is bounded, there are

constants C1 and C2 such that for all q(x)

‖Bias(β̂EL)‖ ≤C1‖Σ‖/n�
e′
jBias(β̂GMM)− e′

jBias(β̂EL)≥C2(m−p) inf{e′
jδi}/n�

Here inf{e′
jδi} = sup{C : Pr(e′

jδi ≥ C) = 1}. In the general heteroskedastic
case, we find that the asymptotic bias of GMM grows linearly with the num-
ber of overidentifying restrictions when inf{e′

jδi} > 0, while the bias of EL is
bounded. In this case the bias of GMM will exceed the bias of EL in magni-
tude when the number of overidentifying restrictions is large enough. We can
also show this result when sup{e′

jδi} < 0. Donald, Imbens, and Newey (2002)
show that these comparisons between asymptotic biases are also correct when
m is allowed to grow with the sample size. If the preliminary estimator β̃ is inef-
ficient, the additional term BW = 2ΣE[d̄iq′

i(HW −H)′κi]/n should be included
in Bias(β̂GMM).

An important special case is a homoskedastic linear model, where uββi = 0
and κi = κ, σ 2

i = σ 2, µ3i = µ3 are constants. Here Bias(β̂EL) = −Σκ/σ 2,
which is the same as the bias of the Gaussian limited information MLE, as
shown by Rothenberg (1996) for Gaussian disturbances. Also, when µ3 = 0,
Bias(β̂GEL) = Bias(β̂EL) and Bias(β̂GMM) = (m − p − 1)Σκ/σ 2, which is the
Nagar (1959) bias of two stage least squares. When µ3 �= 0 all the estimators,
except for EL and GEL with ρ3 = −2, have an additional bias term from esti-
mating the weight matrix.

4.2. Minimum Distance Estimation

The second example is classical minimum distance estimation. Consider mo-
ment conditions where g(z�β) = r(z) − h(β), for r(z) a vector of functions
of the data and h(β) a vector of functions of the unknown parameters. Here
G= −∂h(β0)/∂β, Ω= Var(r(zi)), and aj = −tr(Σ∂2hj(β0)/∂β∂β

′)/2. We can
derive a bound on the bias of β that only depends on Σ, analogous to that
for the previous model, when h(β) can be interpreted as the expectation with



GMM AND GENERALIZED EMPIRICAL LIKELIHOOD ESTIMATORS 231

respect to the pdf for some model. The following assumption imposes this con-
dition along with some smoothness.

ASSUMPTION 5: There is a family of densities f (z|β) such that for any r(z),
h(β) = ∫

r(z)f (z|β)dz. Also, f (z|β) is twice continuously differentiable in a
neighborhood N of β0,

∫
(1 + ‖r(z)‖) supβ∈N ‖∂f (z|β)/∂β‖dz < ∞,

∫
(1 +

‖r(z)‖) supβ∈N ‖∂2f (z|β)/∂β∂β′‖dz < ∞, and for si = ∂ ln f (zi|β0)/∂β and
Fi = ∂2 lnf (zi|β0)/∂β∂β

′ + sis
′
i, we have E[‖si‖2]<∞ and E[‖Fi‖2]<∞.

THEOREM 4.6: If Assumptions 1–4 are satisfied and g(z�β) = r(z) − h(β),
then

Bias(β̂EL)= −ΣG′Ω−1a/n�

Bias(β̂GEL)= Bias(β̂EL)+
(

1 + ρ3

2

)
ΣG′Ω−1E[gig′

iPgi]/n�

Bias(β̂GMM)= Bias(β̂CUE)= Bias(β̂EL)+ΣG′Ω−1E[gig′
iPgi]/n�

Also, if h(β) is linear in β, then Bias(β̂EL)= 0. Furthermore, if Assumption 5 is
also satisfied then

‖Bias(β̂EL)‖ ≤ p‖Σ‖2
√
E[‖si‖2]E[‖Fi‖2]/2n�

Here the bias for GMM is identical to that for CUE, which occurs because
there is no asymptotic bias from estimation of the Jacobian or from the prelim-
inary estimator β̃ as Ωβj = 0 (j = 1� � � � �p). Also, we find that the asymptotic
bias of EL is zero in the special case of a linear h(β) function, and that it does
not grow with the number of overidentifying restrictions.

For optimal minimum distance it seems difficult to give a general result
showing how the bias of GMM grows with the number of moment restric-
tions, but an example provides some insight. Suppose that β is a scalar,
r(z)= (z1� � � � � zm)

′� and h(β)= βι, where ι is an m× 1 vector of units. Also,
suppose that the components of z are mutually independent and identically
distributed. Let σ 2 = var(zji) and µ3 = E[(zji − β0)

3]. Then Ω = σ 2Im and
G= −ι, so that Σ= σ 2/m and P = (Im − ιι′/m)/σ 2. It follows that

Bias(β̂EL)= 0� Bias(β̂GMM)= Bias(β̂CUE)=
(
m− 1
m

)(
µ3

σ 2

)/
n�

Bias(β̂GMM)√
Σ

= √
m

(
m− 1
m

)(
µ3

σ 3

)/
n�

Here the bias of GMM relative to its asymptotic standard error grows with the
square root of the number of overidentifying restrictions. Dividing by the stan-
dard error is an appropriate normalization, since it goes to zero as m grows.
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5. BIAS CORRECTED GMM AND GEL

Although we have established that EL has smaller asymptotic bias than
GMM in several important cases, it is also possible to remove all the asymptotic
bias. As mentioned in the introduction, there are several approaches to bias
correction, including the bootstrap, jackknife, and analytical methods. Here
we use an analytical approach, bias correcting GMM and GEL using the as-
ymptotic bias formulae we have derived. These bias corrections are much sim-
pler computationally than the bootstrap or jackknife methods, particularly in
nonlinear models. They can be constructed using the same ingredients as the
estimator of Σ along with the second derivatives of the moment indicators.

The basic idea of analytical bias corrections is simple and well known, and
consists of estimating the asymptotic bias and subtracting from β̂. Here we
use the general formula of equation (4.1) to construct the bias estimate. For
an estimator F̂ of the distribution of a single observation, the bias corrected
estimator is

β̂c = β̂− B̂ias(β̂)� B̂ias(β̂)=
∫
Q1

(
ψ(z� F̂)� a(z� F̂)� F̂

)
F̂(dz)/n�(5.1)

The distribution estimator F̂ can be chosen to be the empirical distribution
or a distribution based on the GEL probabilities in equation (2.4). This choice
does not affect the asymptotic bias of the estimator, nor the higher order as-
ymptotic variance. It can be shown that the effect of using the GEL probabil-
ities, rather than empirical distribution, enters only through the appearance
in Q2 of a linear combination of

√
nĝ(β̂), and that

√
nĝ(β̂) is asymptotically

uncorrelated with ψ̃. Consequently, since Q2 enters the higher order variance
only through its asymptotic correlation with ψ̃ (see Section 6), using a GEL
estimator of the distribution has no effect on the higher order variance of β̂
(although it will on λ̂).

To describe the specific form of the bias correction for GMM, we need to
introduce some notation. Let β̂GMM denote the GMM estimator and

ĝi = gi(β̂GMM)� Ĝi =Gi(β̂GMM)� Ĝ=
n∑
i=1

Ĝi/n� Ω̂= Ω̂(β̂GMM)�

Σ̂= (Ĝ′Ω̂−1Ĝ)−1� Ĥ = Σ̂Ĝ′Ω̂−1� ψ̂β
i = −Ĥĝi�

P̂ = Ω̂−1 − Ω̂−1ĜΣ̂Ĝ′Ω̂−1�

âj ≡ tr

(
Σ̂

n∑
i=1

∂2gij(β̂GMM)/∂β∂β
′/n

)/
2 (j = 1� � � � �m)�

ĤW = (Ĝ′Ŵ −1Ĝ)−1Ĝ′Ŵ −1� Ω̂βj = ∂Ω̂(β̂GMM)/∂βj�
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Then for the bias formula given in Theorem 4.1, and using the empirical distri-
bution F̂ to estimate the expectations in this formula, the estimator of the bias
term is

B̂ias(β̂GMM)=
[
−Ĥ

(
â+

n∑
i=1

Ĝiψ̂
β
i

/
n

)
− Σ̂

n∑
i=1

Ĝ′
iP̂ĝi

/
n

−
n∑
i=1

ψ̂β
i ĝ

′
iP̂ ĝi

/
n− Ĥ

p∑
j=1

Ω̂βj (ĤW − Ĥ)′ej

]/
n�

The bias corrected GMM estimator is then β̂cGMM = β̂GMM − B̂ias(β̂GMM).
To form a bias corrected GEL estimator we use analogous formulae, re-

placing the empirical distribution F̂ by one based on the GEL probabilities of
equation (2.4). Let β̂GEL denote the estimator, π̂i (i= 1� � � � � n) the associated
empirical probabilities, and

g̃i = gi(β̂GEL)� G̃i =Gi(β̂GEL)� G̃=
n∑
i=1

π̂iG̃i� Ω̃=
n∑
i=1

π̂ig̃ig̃
′
i�

Σ̃= (G̃′Ω̃−1G̃)−1� H̃ = Σ̃G̃′Ω̃−1� ψ̃
β
i = −H̃g̃i�

P̃ = Ω̃−1 − Ω̃−1G̃Σ̃G̃′Ω̃−1�

ãj ≡ tr

(
Σ̃

n∑
i=1

π̂i∂
2gij(β̂GEL)/∂β∂β

′
)/

2 (j = 1� � � � �m)�

Then for the bias formula in Theorem 4.2, the estimator of the GEL asymptotic
bias is

B̂ias(β̂GEL)

=
[
−H̃

(
ã+

n∑
i=1

π̂iG̃iψ̃
β
i

)
−

(
1 + ρ3

2

) n∑
i=1

π̂iψ̃
β
i g̃

′
iP̃ g̃i

]/
n�

The bias corrected GEL estimator is then β̂cGEL = β̂GEL − B̂ias(β̂GEL).
We can show under the conditions already given that these bias corrected

estimators have expansions with zero asymptotic bias.

THEOREM 5.1: If Assumptions 1–4 are satisfied, then β̂cGEL and β̂cGMM satisfy
equation (3�1) with Bias(β̂cGEL)= Bias(β̂cGMM)= 0.
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6. HIGHER ORDER EFFICIENCY OF EMPIRICAL LIKELIHOOD

The precision of different estimators can be compared based on their higher
order MSE, given by

MSE(
√
n(θ̂− θ0))=BnB′

n + Vn� Bn =√
nBias(θ̂)� Vn =Σ+Ξ/n�

Ξ= lim
n→∞

{
var(Q̃1)+E[(√nQ̃1 + Q̃2)ψ̃

′] +E[ψ̃(√nQ̃1 + Q̃2)
′]}�

where Q̃1 = Q1(ψ̃� ã�F0), Q̃2 = Q2(ψ̃� ã� b̃�F0), and terms that are o(n−1) are
dropped. Here the term Ξ is the additional, n−1 variance term for

√
n(θ̂− θ0).

One estimator is higher order efficient relative to another if its MSE matrix
is smaller than that of the other, in the positive semidefinite sense. This prop-
erty is often referred to in the literature as third order efficiency, motivated by
the presence of three terms in the expansion of equation (3.1) (see, e.g., Pfan-
zagl and Wefelmeyer (1978)). In general, although they may be derived rela-
tively straightforwardly from the Appendix, the expressions for Ξ for GMM
and GEL are extremely complicated, and so are not given here, although some
comparisons can be made.

It turns out that bias corrected EL is third or higher order efficient relative to
other bias corrected GMM or GEL estimators, in the sense that Ξ is smaller
for EL. An explanation of this result was given in the introduction. Here we
give a rigorous proof. Let ΞEL denote the higher order variance of bias cor-
rected EL.

THEOREM 6.1: If Assumptions 1–4 are satisfied and Ξ is the higher order vari-
ance of any bias corrected GEL or GMM estimator with Ŵ = Ω̂(β̃) and β̃ an
efficient GMM estimator, then Ξ−ΞEL is positive semi-definite.

The third order efficiency of EL will be shared by any GEL estimator for
which ρ3 = −2 and ρ4 = −6, because they all have the same expansion (3.1)
as EL. Rothenberg (1996) showed the third order efficiency of a bias corrected
EL versus a bias corrected GMM in the linear case of equation (4.5) with
Gaussian disturbances. These higher order variance comparisons correspond
to a quadratic loss function. As shown by Pfanzagl and Wefelmeyer (1978), the
MLE for discrete data is also third order efficient for a wide class of quasi-
convex loss functions satisfying the smoothness condition of their Theorem 1′.
Consequently, it can also be shown that EL is higher order efficient for any
such loss function.

The higher order efficiency of EL only holds among bias corrected estima-
tors. If the bias corrections are dropped, then EL may not have the smallest
MSE. Intuitively, the estimated bias corrections from Section 5 are asymptot-
ically correlated with ψ̃, so dropping them may change the higher order MSE
ranking of Theorem 6.1. Estimators of parametric models are known to be-
have analogously. For instance, Amemiya (1980) showed that in logit models
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the higher order MSE of a minimum chi square estimator is smaller than that
of maximum likelihood for a wide range of parameter values.

As an example of MSE comparisons of estimators without bias correction we
consider heteroskedastic linear regression, a special case of that in Section 4.1.
The model is

yi = x′
iβ0 + ui� E[ui|xi] = 0�(6.1)

Amemiya (1983), Chamberlain (1982), and Cragg (1983) considered GMM
estimators that are more efficient than least squares, based on moment in-
dicators g(z�β) = q(x)(y − x′β), where q(x) includes x. For these moment
indicators we compare the higher order variance of GMM with GEL without
bias correction. We also assume that E[u3

i |xi] = 0, which implies (together with
E[ui|xi] = 0) that GMM and GEL have no asymptotic bias. However, EL need
not be higher order efficient, because omitting the estimated bias corrections
affects the ranking of Theorem 6.1. Intuitively, E[u3

i |xi] = 0 generally does not
hold for either the empirical distribution or the empirical likelihood π̂i distrib-
ution, so that estimated bias corrections are nonzero. Dropping them therefore
will also change the higher order variances.

Let σ 2
i = E[u2

i |xi], µ4i =E[u4
i |xi],

x̄i = −G′Ω−1qiσ
2
i =E[σ 2

i (xi/σ
2
i )q

′
i]{E[σ 2

i qiq
′
i]}−1qiσ

2
i �

and Ki = q′
iPqi.

THEOREM 6.2: If Assumptions 1–4 are satisfied, Ŵ = Ω̂(β̃), and β̃ is an opti-
mal GMM estimator, then

ΞGMM −ΞGEL =D+D′�

D= Σ
{
(ρ3/2)E[(µ4i/σ

4
i − 3)Kix̄ix̄

′
i] +E[Kixi(x̄i − xi)

′]
+ (3ρ3/2)E[Kix̄i(x̄i − xi)

′]}Σ�
Furthermore, if σ 2

i is bounded and bounded away from zero, µ4i is bounded,
E[qiq′

i] is nonsingular for each m, and there exists γm such that for the support
X of x, as m→ ∞,{

sup
x∈X

q(x)′(E[qiq′
i])−1q(x)

}2
E[‖xi/σ 2

i − γmqi‖2] → 0�

then as m→ ∞,

ΞGMM −ΞGEL − ρ3ΣE[(µ4i/σ
4
i − 3)Kix̄ix̄

′
i]Σ→ 0�
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This result gives an explicit formula for the difference of higher order vari-
ances as well as a limit result as the number of moments gets large. The hy-
pothesis for the limit result combines an approximation property for q(x) with
a bound on its size, which by Newey (1997) will hold for cubic splines if the
density of x is bounded away from zero, the support of X is a rectangle, knots
are evenly spaced, and σ 2

i is twice differentiable in xi. Koenker et al. (1994)
also calculate the higher order variance of GMM, for a different choice of β̃ in
Ŵ = Ω̂(β̃). Our contribution is to compare GMM with GEL.

The limit result has a nice interpretation. If the disturbances are condition-
ally normal, so that µ4i = 3σ 4

i , then in the limit the higher order variances are
equal. Also ρ3 = 0 for CUE, so that it has the same limit higher order variance
as GMM. For EL and ET, ρ3 < 0 so that they have smaller limit higher order
variance than GMM when the disturbances are thinner tailed than normal, in
the sense that µ4i < 3σ 4

i , and higher when they are thick tailed, in the sense
that µ4i > 3σ 4

i . In the latter case, GEL estimators with ρ3 > 0 have smaller
limit higher order variance than GMM.

Recently, Donald, Imbens, and Newey (2002) have carried out an analogous
comparison when there is endogeneity, but still with zero conditional skewness
given the instruments. They find that when m is allowed to increase with the
sample size, the MSE of GMM generally exceeds that of GEL for large enough
sample size. This occurs because the squared bias from Section 4 grows with
m2, whereas the variance grows only with m. They also find that the CUE has
smaller higher order variance than a bias corrected GMM, which only cor-
rects for BG. Furthermore, the higher order efficiency ranking among GEL
estimators is similar to that from Theorem 6.2, with EL being higher order less
efficient for thick tailed disturbances.

7. CONCLUSION

The usefulness of higher order bias and variance results depends on how
well they help to explain finite sample properties of estimators. There are now
several Monte Carlo experiments that are consistent with our results. For con-
ditional moment restriction models, Hansen, Heaton, and Yaron (1996) found
that the CUE had smaller bias than GMM, and that iterating on the prelim-
inary estimator β̃ used to form the weighting matrix had little effect on bias.
For IV estimation of a Gaussian linear equation, Ramalho (2001) and Judge
and Mittelhammer (2001) found that, with several instruments, EL and ET
have similar, lower bias than GMM. These findings are consistent with The-
orem 4.5, which shows lower asymptotic bias for GEL when there are several
instruments and zero third moments.

For minimum distance estimation in panel data models, Imbens (1997)
found that EL had smaller bias than GMM. Newey, Ramalho, and Smith
(2001) obtained similar bias results for EL and GMM and also reported that
the bias of the CUE differed little from that of GMM. Moreover, the bias of
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ET, although an improvement over GMM, exceeded that of EL. These find-
ings are consistent with the relatively small bias of EL found in Theorem 4.6.
Newey, Ramalho, and Smith (2001) also found that for large enough sample
size, EL generally had smaller variance than a bias corrected GMM, consistent
with the higher order efficiency of EL found in Theorem 6.1.

Overall, the theory in this paper, when coupled with existing Monte Carlo
results, suggests some prescriptions for applied work. For IV estimation with
many instruments of a single equation where bias from estimating the weight-
ing matrix is not important, GEL estimators should all have smaller bias than
GMM. As yet, the Monte Carlo evidence provides little guidance on which
GEL estimator to use, although the recent theoretical work of Donald, Im-
bens, and Newey (2002) for IV estimation shows that the CUE has smaller
higher order variance than bias corrected GMM while EL and ET may not. In
minimum distance estimation of panel data models, where bias from estima-
tion of the weighting matrix can be a serious problem, the EL estimator has es-
pecially good properties. It eliminates the bias from estimation of the weighting
matrix, and after correcting for bias arising from nonlinearity, is higher order
efficient relative to bias corrected GMM. Thus, for both IV and minimum dis-
tance estimation, the theoretical and Monte Carlo work to date suggests that
GEL estimation should be considered as an alternative to GMM in applied
work.
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APPENDIX: PROOFS

Throughout the Appendix, C will denote a generic positive constant that may be different in
different uses, and CS, M, and T the Cauchy–Schwarz, Markov, and triangle inequalities respec-
tively. Also, with probability approaching one will be abbreviated as w.p.a.1, positive semi-definite
as p.s.d., UWL will denote a uniform weak law of large numbers such as Lemma 2.4 of Newey
and McFadden (1994), and CLT will refer to the Lindeberg–Lévy central limit theorem. We let
P̂(β�λ)= ∑n

i=1 ρ(λ
′gi(β))/n.

PROOF OF THEOREM 2.1: Let A = [g1(β)� � � � � gn(β)]′/√n and ι = (1� � � � �1)′ be an n× 1
vector of units. Thus, ĝ(β) = A′ι/

√
n and Ω̂(β) = A′A. By Rao (1973, 1b.5(vi), (viii)),

A(A′A)−A′ is invariant to the choice of generalized inverse as is the CUE objective function
ι′A(A′A)−A′ι/n. Also, A′A(A′A)−A′ =A′. By ρ(v) quadratic, a second order Taylor expan-
sion is exact, giving

P̂(β�λ)= ρ0 − ĝ(β)′λ− 1
2
λ′Ω̂(β)λ�(A.1)
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By concavity of P̂(β�λ) in λ, any solution λ̂(β) to the first order conditions

0 = ĝ(β)+ Ω̂(β)λ

will maximize P̂(β�λ) with respect to λ holding β fixed. Then, Ω̂(β)Ω̂(β)−ĝ(β) =
A′A(A′A)−A′ι/

√
n= ĝ(β), so that λ̂(β)= −Ω̂(β)−ĝ(β) solves the first order conditions. Since

P̂(β� λ̂(β))= ρ0 + 1
2
ĝ(β)′Ω̂(β)−ĝ(β)�(A.2)

the GEL objective function P̂(β� λ̂(β)) is a monotonic increasing transformation of the CUE
objective function, so that the set of GEL estimators coincides with the set of CUE estima-
tors. Q.E.D.

PROOF OF THEOREM 2.2: We first consider the case where γ �= 0. The first order conditions
for π̄i are (nπ̄i)γ/γ − ᾱ′gi(β̄)− µ̄= 0. Solving gives π̄i = [γ(µ̄+ ᾱ′gi(β̄))]1/γ/n. The other MD
first order conditions are

∑n
i=1 π̄i = 1 and, for Gi(β)= ∂gi(β)/∂β,

n∑
i=1

π̄iGi(β̄)
′ᾱ= 0�

n∑
i=1

π̄igi(β̄)= 0�(A.3)

The first order conditions for λ̂ are
∑n

i=1 ρ1(λ̂
′gi(β̂))gi(β̂)= 0. By the implicit function theorem

there is a neighborhood of β̂ where the solution λ(β) to
∑n

i=1 ρ1(λ
′gi(β))gi(β) = 0 exists and is

continuously differentiable. Then by the envelope theorem the first order conditions for GEL are
n∑
i=1

π̂iGi(β̂)
′λ̂= 0�

n∑
i=1

π̂igi(β̂)= 0�(A.4)

where π̂i = ρ1(λ̂
′gi(β̂))/

∑n
j=1 ρ1(λ̂

′gj(β̂)). Then for λ̄= ᾱ/(γµ̄), by
∑n

i=1 π̄i = 1,

π̄i = [(γµ̄)1/γ/n](1 + γλ̄′gi(β̄)
)1/γ = (

1 + γλ̄′gi(β̄)
)1/γ

/ n∑
j=1

(
1 + γλ̄′gj(β̄)

)1/γ
�

Noting that ρ1(v)= −(1 + γv)1/γ� we see from the respective first order conditions that the con-
clusion holds for π̂i = π̄i and λ̂= λ̄.

For the γ = 0 case, we note that ρ(v) = −ev and that under the constraint
∑n

i=1πi = 1,∑n
i=1 h(πi) = ∑n

i=1 ln(nπi)πi = ∑n
i=1 ln(πi)πi + ln(n). Then using this objective function in the

Lagrangian, the first order conditions for π̄i are 1 + ln(π̄i)= µ̄+ ᾱ′gi(β̄). Solving,

π̄i = exp
(
µ̄− 1 + ᾱ′gi(β̄)

) = exp
(
λ̄′gi(β̄)

)/ n∑
j=1

exp
(
λ̄′gj(β̄)

)
�

with λ̄= ᾱ. The conclusion then follows as before. Q.E.D.

PROOF OF THEOREM 2.3: Let Ĝi =Gi(β̂) and ĝi = gi(β̂). By equation (A.4) and the defini-
tion of k(v),

0 =
n∑
i=1

ρ1(v̂i)ĝi =
n∑
i=1

[ρ1(v̂i)+ 1]ĝi − nĝ(β̂)=
n∑
i=1

k(v̂i)ĝiĝ
′
iλ̂− nĝ(β̂)�

Solving for λ̂� plugging into the first part of equation (A.4), and multiplying by
∑n

j=1 k(v̂j)/n gives
the first result. Note that for EL k(v) = [−(1 − v)−1 + 1]/v = −(1 − v)−1 = ρ1(v) and for CUE
k(v)= [−(1 + v)+ 1]/v= −1 is constant. Q.E.D.

Let bi = supβ∈B ‖gi(β)‖.
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LEMMA A1: If Assumption 1 is satisfied, then for any ζ with 1/α < ζ < 1/2 and Λn = {λ : ‖λ‖ ≤
n−ζ}, supβ∈B�λ∈Λn�1≤i≤n |λ′gi(β)| p→ 0 and w.p.a.1, Λn ⊆ Λ̂n(β) for all β ∈ B.

PROOF: By Assumption 1 it follows by M that max1≤i≤n bi =Op(n
1/α). Then by CS,

sup
β∈B�λ∈Λn�1≤i≤n

|λ′gi(β)| ≤ n−ζ max
1≤i≤n

bi =Op(n
−ζ+1/α)

p→ 0�

giving the first conclusion, so w.p.a.1 λ′gi(β) ∈ V for all β ∈ B and ‖λ‖ ≤ n−ζ . Q.E.D.

LEMMA A2: If Assumption 1 is satisfied, β̄ ∈ B, β̄
p→ β0 , and ĝ(β̄) = Op(n

−1/2), then λ̄ =
arg maxλ∈Λ̂n(β̄) P̂(β̄� λ) exists w.p.a.1, λ̄=Op(n

−1/2), and supλ∈Λ̂n(β̄) P̂(β̄� λ)≤ ρ0 +Op(n
−1).

PROOF: By UWL Ω def= Ω̂(β̄)
p→Ω. Then by nonsingularity of Ω the smallest eigenvalue of Ω

is bounded away from zero w.p.a.1. Let Λn be as defined in Lemma A1. By Lemma A1 and
twice continuous differentiability of ρ(v) in a neighborhood of zero, P̂(β̄� λ) is twice continuously
differentiable on Λn w.p.a.1. Then λ̃= arg maxλ∈Λn P̂(β̄� λ) exists w.p.a.1. Furthermore, for ḡi =
gi(β̄) and any λ̇ on the line joining λ̃ and 0, by Lemma A1 and ρ2 = −1, max1≤i≤n ρ2(λ̇

′ḡi) <−1/2
w.p.a.1. Then by a Taylor expansion around λ= 0 with Lagrange remainder, there is λ̇ on the line
joining λ̃ and 0 such that for ḡ def= ĝ(β̄),

ρ0 = P̂(β̄�0)≤ P̂(β̄� λ̃)= ρ0 − λ̃′ḡ+ (1/2)λ̃′
[

n∑
i=1

ρ2(λ̇
′ḡi)ḡiḡ′

i/n

]
λ̃

≤ ρ0 − λ̃′ḡ− (1/4)λ̃′Ωλ̃≤ ρ0 + ‖λ̃‖‖ḡ‖ −C‖λ̃‖2�

Subtracting ρ0 −C‖λ̃‖2 from both sides and dividing by ‖λ̃‖ we find that C‖λ̃‖ ≤ ‖ḡ‖, w.p.a.1. By
assumption, ḡ=Op(n

−1/2), and hence ‖λ̃‖ =Op(n
−1/2)= op(n

−ζ). Therefore, w.p.a.1 λ̃ ∈ int(Λn)

and hence ∂P̂(β̄� λ̃)/∂λ = 0, the first order conditions for an interior maximum. By Lemma A1,
w.p.a.1 λ̃ ∈ Λ̂n(β̄), so by concavity of P̂(β̄� λ) and convexity of Λ̂n(β̄) it follows that P̂(β̄� λ̃) =
supλ∈Λ̂n(β̄) P̂(β̄� λ)� giving the first and second conclusions with λ̄= λ̃. Then by the last inequality
of the above equation, ‖ḡ‖ =Op(n

−1/2), and ‖λ̃‖ =Op(n
−1/2), we obtain P̂(β̄� λ̄)≤ ρ0 +‖λ̄‖‖ḡ‖−

C‖λ̄‖2 = ρ0 +Op(n
−1). Q.E.D.

LEMMA A3: If Assumption 1 is satisfied, then ‖ĝ(β̂)‖ =Op(n
−1/2).

PROOF: Let ĝi = gi(β̂), ĝ = ĝ(β̂), and for ζ in Lemma A1, λ̃ = −n−ζĝ/‖ĝ‖. By Lemma A1,
maxi≤n |λ̃′ĝi| p→ 0 and λ̃ ∈ Λ̂n(β̂) w.p.a.1. Thus, for any λ̇ on the line joining λ̃ and 0, w.p.a.1
ρ2(λ̇

′ĝi)≥ −C (i = 1� � � � � n). Also, by CS and UWL,
∑

i ĝiĝ
′
i/n≤ (

∑
i b

2
i /n)I

p→ CI, so that the
largest eigenvalue of

∑
i ĝiĝ

′
i/n is bounded above w.p.a.1. An expansion then gives

P̂(β̂� λ̃) = ρ0 − λ̃′ĝ+ (1/2)λ̃′
[∑

i

ρ2(λ̇
′ĝi)ĝiĝ′

i/n

]
λ̃

≥ ρ0 + n−ζ‖ĝ‖ −C(1/2)λ̃′
[∑

i

ĝiĝ
′
i/n

]
λ̃≥ ρ0 + n−ζ‖ĝ‖ −Cn−2ζ

w.p.a.1. By the CLT the hypotheses of Lemma A2 are satisfied by β̄ = β0 . By β̂ and λ̂ being a
saddle point, this equation and Lemma A2 give

ρ0 + n−ζ‖ĝ‖ −Cn−2ζ ≤ P̂(β̂� λ̃)≤ P̂(β̂� λ̂)≤ sup
λ∈Λ̂n(β0)

P̂(β0� λ)≤ ρ0 +Op(n
−1)�(A.5)
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Also, by ζ < 1/2, ζ − 1<−1/2<−ζ. Solving equation (A.5) for ‖ĝ‖ then gives

‖ĝ‖ ≤Op(n
ζ−1)+Cn−ζ =Op(n

−ζ)�(A.6)

Now, consider any εn → 0. Let λ̄ = −εnĝ. Note that λ̄ = op(n
−ζ) by equation (A.6), so that

λ̄ ∈Λn w.p.a.1. Then, as in equation (A.5),

ρ0 − λ̄′ĝ−C‖λ̄‖2 = ρ0 + εn‖ĝ‖2 −Cε2
n‖ĝ‖2 ≤ ρ0 +Op(n

−1)�

Since, for all n large enough, 1−εnC is bounded away from zero, it follows that εn‖ĝ‖2 =Op(n
−1).

The conclusion then follows by a standard result from probability theory, that if εnYn =Op(n
−1)

for all εn → 0, then Yn =Op(n
−1). Q.E.D.

PROOF OF THEOREM 3.1: Let g(β) = E[g(z�β)]. By Lemma A3, ĝ(β̂)
p→ 0, and by UWL,

supβ∈B ‖ĝ(β)− g(β)‖ p→ 0 and g(β) is continuous. By T g(β̂)
p→ 0. Since g(β) = 0 has a unique

zero at β0, ‖g(β)‖ must be bounded away from zero outside any neighborhood of β0 . Therefore,
β̂ must be inside any neighborhood of β0 w.p.a.1, i.e. β̂

p→ β0, giving the first conclusion. The
second conclusion follows by Lemma A3. Also, note by the first two conclusions the hypotheses
of Lemma A2 are satisfied for β̄= β̂, so that the last conclusion follows from Lemma A2. Q.E.D.

PROOF OF THEOREM 3.2: For ĝi = gi(β̂)� by Theorem 3.1 and Lemma A1, maxi≤n |λ̂′ĝi| p→ 0.
Therefore, the first order conditions

∑n
i=1 ρ1(λ̂

′ĝi)ĝi = 0 are satisfied w.p.a.1. Also, Ω̃ =∑n
i=1 ρ2(λ̂

′ĝi)ĝiĝ′
i/n

p→ ρ2Ω so that Ω̃ is nonsingular w.p.a.1. Then as in the proof of Theorem 2.2,
the first order conditions of equation (A.4) are satisfied w.p.a.1. Then by a mean value expansion
of the second part of these first order conditions we have, for θ̂= (β̂′� λ̂′)′ and θ0 = (β′

0�0′)′ ,

0 =
(

0
−ĝ(β0)

)
+M(θ̂− θ0)�(A.7)

M =


0

n∑
i=1

ρ1(λ̂
′ĝi)Gi(β̂)

′
/
n

n∑
i=1

ρ1(λ̄
′ĝi)Gi(β̄)

/
n

n∑
i=1

ρ2(λ̄
′ĝi)gi(β̄)ĝ′

i

/
n

 �

where β̄ and λ̄ are mean values that actually differ from row to row of the matrix M . By λ̄ =
Op(n

−1/2), it follows as in Lemma A1 that maxi≤n |λ̄′ĝi| p→ 0. Therefore, maxi≤n |ρ1(λ̃
′ĝi)+1| p→ 0

and maxi≤n |ρ2(λ̄
′ĝi)+ 1| p→ 0. It then follows from UWL that M

p→M , where

M = −
(

0 G′

G Ω

)
� M−1 = −

(−Σ H
H ′ P

)
�

Inverting and solving in equation (A.7) then gives

√
n(θ̂− θ0) = −M−1

(0�−√
nĝ(β0)

′)′ = −M−1(0�−√
nĝ(β0)

′)′ + op(1)(A.8)

= −(H ′� P)′
√
nĝ(β0)+ op(1)�

The first conclusion follows from this equation and the CLT. For the second conclusion, note that
an expansion and equation (A.8) give

ĝ(β̂)= ĝ(β0)−GHĝ(β0)+ op(n
−1/2)= −Ωλ̂+ op(n

−1/2)�
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Also,

P̂(β̂� λ̂) = ρ0 − λ̂′ĝ(β̂)+ λ̂′
[

n∑
i=1

ρ2(λ̄
′ĝi)ĝiĝ′

i

/
n

]
λ̂/2(A.9)

= ρ0 − λ̂′ĝ(β̂)− λ̂′Ωλ̂/2 + op(n
−1)= ρ0 + ĝ(β̂)′Ω−1ĝ(β̂)/2 + op(n

−1)�

It follows as in Hansen (1982) that nĝ(β̂)′Ω−1ĝ(β̂)
d→ χ2(m− p), so the second conclusion fol-

lows from equation (A.9). Q.E.D.

We now give some lemmas that are used to derive asymptotic expansions. The next one is
like Lemma 3.3 of Rilstone, Srivastava, and Ullah (1996), except that we expand in a shrinking
neighborhood to allow for λ̂ in GEL. For notational simplicity we will suppress the F argument.

LEMMA A4: Suppose that the estimator θ̂ and vector of functions m(z�θ) satisfy (a) θ̂ = θ0 +
Op(n

−1/2); (b) m̂(θ̂) = ∑n
i=1m(zi� θ̂)/n = 0 w.p.a.1; (c) for some ζ > 2, d(z) with E[d(z)] <∞,

and Tn = {θ : ‖θ− θ0‖ ≤ n−1/ζ}, w.p.a.1 for i= 1� � � � � n, m(zi� θ) is three times continuously differ-
entiable on Tn and for θ ∈ Tn,∥∥∂3m(zi� θ)/∂θj∂θk∂θK − ∂3m(zi� θ0)/∂θj∂θk∂θK

∥∥ ≤ d(zi)‖θ− θ0‖;
(d) E[‖m(z�θ0)‖6], E[‖∂m(z�θ0)/∂θ‖6], E[‖∂2m(z�θ0)/∂θj∂θ‖6], and E[‖∂3m(z�θ0)/
∂θj∂θk∂θ‖2] (j�k= 1� � � � � q), are finite; (e) E[m(z�θ0)] = 0 and M = E[∂m(z�θ0)/∂θ] exists and
is nonsingular. Let

Mj = E[∂2m(z�θ0)/∂θj∂θ]� Mjk = E[∂3m(z�θ0)/∂θk∂θj∂θ]�
A(z)= ∂m(z�θ0)/∂θ−M� Bj(z)= ∂2m(z�θ0)/∂θj∂θ−Mj�

ψ(z)= −M−1m(z�θ0)� a(z)= vecA(z)� b(z)= vec[B1(z)� � � � �Bq(z)]�

Then equation (3�1) is satisfied for
√
n(θ̂− θ0) with

Q1(ψ̃� ã)= −M−1

[
Ãψ̃+

q∑
j=1

ψ̃jMjψ̃/2

]
�(A.10)

Q2(ψ̃� ã� b̃)= −M−1

[
ÃQ1(ψ̃� ã)+

q∑
j=1

{
ψ̃jMjQ1(ψ̃� ã)+Q1j(ψ̃� ã)Mjψ̃+ ψ̃jB̃jψ̃

}
/2

+
q∑

j�k=1

ψ̃jψ̃kMjkψ̃/6

]
�

PROOF: Let M̂(θ) = n−1
∑n

i=1 ∂m(zi� θ)/∂θ. A Taylor expansion with Lagrange remainder
gives

0 = m̂(θ0)+ M̂(θ0)(θ̂− θ0)+
q∑
j=1

(θ̂j − θj0)[∂M̂(θ0)/∂θj](θ̂− θ0)/2(A.11)

+
q∑

j�k=1

(θ̂j − θj0)(θ̂k − θk0)[∂2M̂(θ̄)/∂θk∂θj](θ̂− θ0)/6�
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By T, M, the CLT, and the Lipschitz hypothesis,∥∥∂2M̂(θ̄)/∂θk∂θj −Mjk

∥∥
≤ ∥∥∂2M̂(θ̄)/∂θk∂θj − ∂2M̂(θ0)/∂θk∂θj

∥∥ + ∥∥∂2M̂(θ0)/∂θk∂θj −Mjk

∥∥
≤

[
n∑
i=1

d(zi)/n

]
‖θ̂− θ0‖ +Op(n

−1/2)=Op(n
−1/2)�

It follows then for M̂ = M̂(θ0) that adding, subtracting, and solving gives

θ̂− θ0 = ψ̃/
√
n−M−1

[
Ã(θ̂− θ0)/

√
n+

q∑
j=1

(θ̂j − θj0)Mj(θ̂− θ0)/2(A.12)

+
q∑
j=1

(θ̂j − θj0)(B̃j/
√
n)(θ̂− θ0)/2

+
q∑

j�k=1

(θ̂j − θj0)(θ̂k − θk0)Mjk(θ̂− θ0)/6

]
+Op(n

−2)�

As all the terms except ψ̃/
√
n are Op(n

−1), it follows that

θ̂− θ0 = ψ̃/
√
n+Op(n

−1)�

Next, since the last three terms (including the remainder) in equation (A.12) are Op(n
−3/2), and

replacing θ̂− θ0 by ψ̃/
√
n in the second and third terms also generates an error that is Op(n

−3/2),
we obtain

θ̂− θ0 = ψ̃/
√
n−M−1

[
Ãψ̃+

q∑
j=1

ψ̃jMjψ̃/2

]/
n+Op(n

−3/2)(A.13)

= ψ̃/
√
n+Q1(ψ̃� ã)/n+Op(n

−3/2)�

Finally, replacing θ̂−θ0 in the second and third terms of equation (A.12) by ψ̃/
√
n+Q1(ψ̃� ã)/n

and in the fourth and fifth terms by ψ̃/
√
n gives the conclusion. Q.E.D.

LEMMA A5: Suppose that Assumptions 1–4 are satisfied and let

ΣW = (G′W −1G)−1� HW = ΣWG
′W −1� PW =W −1 −W −1GHW �

ψi = −[H ′
W �PW ]′gi� G

j
i =E[∂Gi(β0)/∂βj ]�

Mi = −
(

0 G′
i

Gi W + ξ(zi)

)
� M = −

(
0 G′

G W

)
� M−1 = −

(−ΣW HW

H ′
W PW

)
�

Mj = −
(

0 E[Gj
i ]′

E[Gj
i ] 0

)
(j ≤ p)�

Mp+j = −
(
E[∂2gij(β0)/∂β∂β

′ ] 0
0 0

)
(j ≤m)�

Then for λ̃= −Ŵ −1ĝ(β̃), θ̂= (β̃′� λ̃′)′ , and for ψ̃, ã, and Q1(·� ·) as in Lemma A4 we have

θ̂= θ0 + ψ̃/
√
n+Q1(ψ̃� ã)/n+Op(n

−3/2)�
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PROOF: Let θ = (β′� λ′)′ , λ0 = 0, and m(z�θ) = −(λ′∂g(z�β)/∂β�g(z� θ)′ + λ′[W + ξ(z)])′ .
It follows from Theorem 3.4 of Newey and McFadden (1994) that θ̂= θ0 +Op(n

−1/2). Note that
for this choice of m(z�θ) we have Mi = ∂m(zi� θ0)/∂θ and Mj in Lemma A4 as in the statement
of Lemma A5. Then for m̂(θ)= ∑

i m(zi� θ)/n, by the first order conditions for β̃, the definition
of λ̃, and Assumption 4 we have

0 = m̂(θ̂)+
[

0�−λ̃′(Ŵ −W −
∑
i

ξ(zi)/n)

]′
= m̂(θ̂)+Op(n

−3/2)�(A.14)

Then expanding as in equation (A.13) gives the result. Q.E.D.

LEMMA A6: Suppose that Assumptions 1–4 are satisfied and let Ωiβj = ∂[gi(β0)gi(β0)
′]/∂βj ,

Ωβj = E[Ωiβj ], Ω̃βj = ∑
i(Ωiβj − Ωβj )/

√
n, Ωβjβk = E[∂2{gi(β0)gi(β0)

′}/∂βk∂βj ], and let a su-
perscript W denote objects from the conclusion of Lemma A5, that is let ψW

i , MW
i , MW

j , aWi , and
QW

1 (·� ·) be as there without the superscript W . Also, let ξΩi = gig
′
i −Ω+ ∑p

j=1Ωβj e
′
jψ

W
i and

Q̃Ω
1 =

p∑
j=1

Ω̃βj e
′
jψ̃

W +
p∑
j=1

Ωβj e
′
jQ

W
1 (ψ̃

W � ãW )+
p∑

j�k=1

Ωβkβj e
′
jψ̃

W e′
kψ̃

W /2�

Then Ω̂(β̃)=Ω+ ξ̃Ω/
√
n+ Q̃Ω

1 /n+Op(n
−3/2).

PROOF: Similarly to the proof of Lemma A4, expanding gives

Ω̂(β̃) = Ω̂(β0)+
p∑
j=1

Ωβj (β̃j −βj0)+
p∑
j=1

(Ω̃βj /
√
n)(β̃j −βj0)(A.15)

+
p∑

j�k=1

Ωβkβj (β̃j −βj0)(β̃k −βk0)/2 +Op(n
−3/2)�

By Lemma A5,

β̃j −βj0 = e′
jψ̃

W /
√
n+Op(n

−1)= e′
jψ̃

W /
√
n+ e′

jQ
W
1 (ψ̃

W � ãW )/n+Op(n
−3/2)�

The conclusion follows by substituting the first equality for the last two terms in equation (A.15)
and by substituting the second equality for the second term. Q.E.D.

PROOF OF THEOREM 3.3: Let mi(θ)= −(λ′Gi(β)� gi(β)
′ + λ′(Ω+ ξΩi ))

′ , A(zi), M , Mj be as
in Lemma A5 with W =Ω. Also, let ψi = −[H ′� P]′gi and ψ̃= ∑

i ψi/
√
n.

B1
j (zi)= −

(
0 G

j′
i −E[Gj

i ]′
G
j
i −E[Gj

i ] 0

)
(j ≤p)�

B1
p+j(zi)= −

(
∂2gij(β0)/∂β∂β

′ −E[∂2gij(β0)/∂β∂β
′ ] 0

0 0

)
(j ≤m)�

Let λ̂= −Ω̂(β̃)−1ĝ(β̂). Then λ̂=Op(n
−1/2), e.g. as shown in Newey and McFadden (1994). Then

the first order conditions for GMM and Lemma A6 imply

0 = m̂(θ̂)+ [
0�−λ̂′(Q̃Ω

1 /n+Op(n
−3/2))

]′ = m̂(θ̂)+ [
0�−λ̂′Q̃Ω

1 /n
]′ +Op(n

−2)�(A.16)

Let Q1(·� ·) and Q21(·� ·� ·) be equal to Q1 and Q2 as given in the conclusion of Lemma A4, with
ψ̃,M , Mj , Mjk ,A(z), as specified here (and as in Lemma A5 with W =Ω). Also, let b1(z) be the
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vector elements of every Bj(z) and T = θ0 + ψ̃/
√
n+Q1(ψ̃� ã)/n+Q21(ψ̃� ã� b̃

1)/n3/2. Then as
−λ̂′Q̃Ω

1 /n=Op(n
−3/2) we can solve for θ̂− θ0 as in the conclusion of Lemma A4 to obtain

θ̂= T +M−1[0� λ̂′Q̃Ω
1 /n]′ +Op(n

−2)�

Then by λ̂= [0� Im]ψ̃/√n+Op(n
−1) we can substitute for λ̂ to obtain

θ̂= T +M−1diag[0� Q̃Ω
1 ]ψ̃/n3/2 +Op(n

−2)�

The conclusion then follows by including in b(z) all the components of b1(z) as well as those of
every variable that appears as

√
n times a sample average in Q̃Ω

1 . Then we find the second order
term in the expansion for GMM to be

Q2(ψ̃� ã� b̃)=Q21(ψ̃� ã� b̃
1)+M−1diag[0� Q̃Ω

1 ]ψ̃�
giving the conclusion. Q.E.D.

PROOF OF THEOREM 3.4: We apply Lemma A4. Let θ= (β′� λ′)′, θ0 = (β′
0�0′)′ , θ̂ be the GEL

estimator, Gi(β)= ∂gi(β)/∂β, and

m(zi� θ)= ρ1(λ
′gi(β))

(
Gi(β)

′λ
gi(β)

)
�

By Theorem 3.2, θ̂= θ0 +Op(n
−1/2). Also, as shown in the proof of Theorem 3.2,

∑
i m(zi� θ̂)= 0

w.p.a.1. Let 2< ζ < α for α in Assumption 1(d). Then by Lemma A1, Assumption 3, and ρ1(v)
three times continuously differentiable on a neighborhood of 0, m(zi� θ) is three times continu-
ously differentiable on Tn of Lemma A4, i = 1� � � � � n, to which we henceforth restrict attention.
Let mi(θ)=m(zi� θ)� vi(θ)= λ′gi(θ), hi(θ)= ∂vi(θ)/∂θ= (λ′Gi(β)� gi(β)

′)′, and hi(θ)j denote
the jth element of hi(θ). Then

∂mi(θ)/∂θ= ρ2(vi(θ))hi(θ)hi(θ)
′ + ρ1(vi(θ))∂hi(θ)/∂θ�(A.17)

∂2mi(θ)/∂θj∂θ= ρ3(vi(θ))hi(θ)jhi(θ)hi(θ)
′ + ρ2(vi(θ))∂[hi(θ)hi(θ)′]/∂θj

+ ρ2(vi(θ))hi(θ)j∂hi(θ)/∂θ+ ρ1(vi(θ))∂
2hi(θ)/∂θj∂θ�

∂3mi(θ)/∂θk∂θj∂θ

= ρ4(vi(θ))hi(θ)khi(θ)jhi(θ)hi(θ)
′ + ρ3(vi(θ))∂[hi(θ)jhi(θ)hi(θ)′]/∂θk

+ ρ3(vi(θ))hi(θ)k∂[hi(θ)hi(θ)′]/∂θj + ρ2(vi(θ))∂
2[hi(θ)hi(θ)′]/∂θk∂θj

+ ρ3(vi(θ))hi(θ)khi(θ)j∂hi(θ)/∂θ+ ρ2(vi(θ))∂[hi(θ)j∂hi(θ)/∂θ]/∂θk
+ ρ2(vi(θ))hi(θ)k∂

2hi(θ)/∂θj∂θ+ ρ1(vi(θ))∂
3hi(θ)/∂θk∂θj∂θ�

By hypothesis ρj(v) is Lipschitz in a neighborhood of zero so that for bi = b(zi),∣∣ρj(vi(θ))− ρj
∣∣ ≤ C|vi(θ)| ≤ C‖λ‖‖gi(β)‖ ≤ Cbi‖θ− θ0‖�

Also, by Assumption 3, all of the terms involving hi(θ) and its derivatives in the third derivative
formi(θ) are bounded above by Cb4

i on Tn. Then the norm of the difference of ∂3mi(θ)/∂θk∂θj∂θ
and the same expression with vi(θ) replaced by vi(θ0) = 0 is bounded above by Cb5

i ‖θ − θ0‖.
Also, it follows by similar reasoning that the difference of each expression involving hi(θ) and its
value at θ0 is bounded by CbJi ‖θ− θ0‖ for some integer J ≤ 4. Thus, the Lipschitz hypothesis of
Lemma A4 holds by E[b5

i ]<∞.
Next, let gi = gi(β0) and Gi =Gi(β0). Note that hi(θ0)= (0′� g′

i)
′, so that by ρ1 = ρ2 = −1,

∂mi(θ0)/∂θ= −
(

0 G′
i

Gi gig
′
i

)
� M = −

(
0 G′

G Ω

)
�(A.18)



GMM AND GENERALIZED EMPIRICAL LIKELIHOOD ESTIMATORS 245

and M is nonsingular, as shown in the proof of Theorem 3.2. Now let Gj
i = ∂2gi(β0)/∂βj∂β,

g
j
i = ∂gi(β0)/∂βj� t = j − p for j > p, let et denote the tth unit vector, and a t subscript denote

the tth element of a vector. Then evaluate at θ= θ0 to obtain

∂2mi(θ0)/∂θj∂θ = −
(

0 G
j′
i

G
j
i g

j
i g

′
i + gig

j′
i

)
(j ≤ p)�(A.19)

= −
(
∂2[e′

tgi(β0)]/∂β∂β′ G′
ietg

′
i + gitG

′
i

gie
′
tGi + gitGi −ρ3gitgig

′
i

)
(j > p)�

Next, let Gjk
i = ∂3gi(β0)/∂βk∂βj∂β and gjki = ∂2gi(β0)/∂βk∂βj . Then for the second derivatives

corresponding to β, with j ≤ p and k≤ p,

∂3mi(θ0)/∂θk∂θj∂θ= −
(

0 G
jk′
i

G
jk
i g

jk
i g

′
i + g

j
i g

k′
i + gki g

j′
i + gig

jk′
i

)
�(A.20)

For the cross partial between λt and βj� with j ≤ p, k > p, and t = k−p,

∂3mi(θ0)/∂θk∂θj∂θ(A.21)

= −
(

∂3git(β0)/∂βj∂β∂β
′ G′

ietg
j′
i +G

j′
i etg

′
i +GitjG

′
i + gitG

j′
i

g
j
i etGi + gietG

j
i +GitjGi + gitG

j
i −ρ3[Gitjgig

′
i + git (g

j
i gi + gig

j′
i )]

)
�

For the second partial derivatives between λt and λu, with j > p, k > p, t = j−p, and u= k−p,

∂3mi(θ0)/∂θk∂θj∂θ =
( −G′

iete
′
uGi −G′

ieue
′
tGi ρ3(gitG

′
ieu + giuG

′
iet)g

′
i

ρ3gi(gite
′
uGi + giue

′
tGi) ρ4gitgiugig

′
i

)
(A.22)

−
(
git∂

2giu(β0)/∂β∂β
′ + giu∂

2git(β0)/∂β∂β
′ −ρ3gitgiuG

′
i−ρ3gitgiuGi 0

)
�

Then by the conclusion of Lemma A4, equation (3.1) is satisfied, for Q1, Q2, a(z), and b(z)
as given in the statement of Lemma A4, and for mi(θ) and its derivatives as given in this
proof. Q.E.D.

PROOF OF THEOREM 4.1: By Lemma A6 it follows that Assumption 4 is satisfied for W =Ω

and ξΩi = gig
′
i −Ω−∑p

j=1Ωβj e
′
jHW gi . Note that E[e′

jHW giPgi] = PE[gig′
i]H ′

W ej = (HW −H)′ej .
Also, for Sk = E[∂2gik(β0)/∂β∂β

′ ], the kth element of
∑p

j=1E[Gj
i ]Σej/2 is

∑p
j=1 e

′
jSkΣej/2 =∑p

j=1 tr(Σeje′
jSk)/2 = ak. Then for λ̂= −Ω̂(β̃)−1ĝ(β̂) the bias of θ̂= (β̂′� λ̂′)′ can be obtained as

the expectation of the term from Lemma A5 with W =Ω, giving

Bias(θ̂) = E[Q1(ψi� ai)]/n

= −M−1

{
E

[(
0 G′

i

Gi ξΩi

)(
H
P

)
gi

]

−
p∑
j=1

(
0 E[Gj

i ]′
E[Gj

i ] 0

)(
Σ
0

)
ej/2 −

m∑
j=1

(
Sj 0
0 0

)(
0
P

)
ej/2

}/
n

= −M−1

(
E[G′

iPgi]
E[GiHgi] − a+E[gig′

iPgi] − ∑p
j=1Ωβj (HW −H)′ej

)/
n�

Then [Ip�0]M−1 = [Σ�−H] and the previous equation gives the result. Q.E.D.
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PROOF OF THEOREM 4.2: By the proof of Theorem 3.4 θ̂ = (β̂′� λ̂′)′ satisfies equation (3.1)
with Q1 as in the statement of Lemma A4 with ψ(zi) = −[H ′� P]′gi , for H = ΣG′Ω−1, A(zi) =
∂mi(θ0)/∂θ−E[∂mi(θ0)/∂θ] for ∂mi(θ0)/∂θ from equation (A.18), andMj = E[∂2mi(θ0)/∂θj∂θ]
for ∂2mi(θ0)/∂θj∂θ from equation (A.19). Note that E[ψiψ

′
i] = diag[Σ�P] and

E[A(zi)ψi] =
(

E[G′
iPgi]

E[GiHgi + gig
′
iPgi]

)
�

Also,
∑m

j=1 Pejgij = ∑m
j=1 Peje

′
jgi = Pgi� and by symmetry of P�

∑m
j=1G

′
iejg

′
iPej =∑m

j=1G
′
ieje

′
jPgi =G′

iPgi . Then

q∑
j=1

MjE[ψiψ
′
i]ej/2 =

p∑
j=1

Mj [Σ�0]′ej/2 +
m∑
j=1

Mj+p[0� P]′ej/2

= −
p∑
j=1

(
0

E[Gj
i ]Σej/2

)
−

m∑
j=1

(
E[G′

iejg
′
i + gijG

′
i]Pej/2−ρ3E[gijgig′

i]Pej/2
)

=
( −E[G′

iPgi]−a+ ρ3E[gig′
iPgi]/2

)
�

Then by Lemma A4, Bias(θ̂) is the first p elements of

E[Q1(ψi� ai� F0)]/n = −M−1

{
E[A(zi)ψi] +

q∑
j=1

MjE[ψiψ
′
i]ej/2

}/
n

= −M−1

(
0

−a+E[GiHgi] + (1 + ρ3/2)E[gig′
iPgi]

)/
n�

Q.E.D.

PROOF OF THEOREM 4.5: Note that tr(Σ∂2gij(β0)/∂β∂β
′) = qj(xi)tr(Σuββi), so that aj =

E[qj(xi)tr(Σuββi)]/2 = E[qj(xi)tr(ΣHi)]/2. Also, note that Gi = qiu
′
βi , so that G′Ω−1Gi = d̄iu

′
βi .

Then we have

ΣG′Ω−1a= ΣG′Ω−1E[qitr(ΣHi)]/2 = ΣE[d̄itr(ΣHi)]/2�
ΣG′Ω−1E[GiΣG

′Ω−1gi] = ΣE[d̄iu′
βiΣd̄iui] = ΣE[d̄id̄′

iΣuβiui] = −ΣE[d̄id̄′
iΣκi]�

BG = −ΣE[uβiq′
iPqiui]/n= ΣE[κiq′

iPqi]/n�
BΩ = ΣE[d̄iu3

i q
′
iPqi]/n= ΣE[d̄iµ3iq

′
iPqi]/n�

Note next that d̄i is the mean square projection of di on qi for the expectation operator E given
byE[a(xi)] = E[σ2

i a(xi)]/E[σ2
i ]. Therefore, it follows thatE[σ2

i ‖d̄i‖2] ≤ E[σ2
i ‖di‖2]. By standard

results for matrix norms, |tr(ΣHi)| ≤p‖ΣHi‖ ≤ p‖Σ‖‖Hi‖. Then by CS∥∥E[d̄itr(ΣHi)]/2
∥∥ ≤ p‖Σ‖E[σi‖d̄i‖‖Hi‖/σi]/2

≤ p‖Σ‖
√
E[σ2

i ‖d̄i‖2]
√
E[‖Hi‖2/σ2

i ]/2

≤ p‖Σ‖
√
E[σ2

i ‖di‖2]
√
E[‖Hi‖2/σ2

i ]/2�
Also, we have for ∆= supx ‖κ(x)/σ2(x)‖,∥∥E[d̄id̄′

iΣκi]
∥∥ ≤ ‖Σ‖E[‖d̄i‖2‖κi‖

] ≤ ‖Σ‖E[
σ2
i ‖d̄i‖2]∆≤ ‖Σ‖E[σ2

i ‖di‖2]∆�
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By T and CS we then have∥∥Bias(β̂EL)
∥∥ ≤ ‖Σ‖

(
p
√
E[σ2

i ‖di‖2]
√
E[‖Hi‖2/σ2

i ]
/

2 +E[σ2
i ‖di‖2]∆

)/
n�

giving the first conclusion. For the second conclusion, note that E[σ2
i q

′
iPqi] = E[g′

iPgi] =m−p,
so that for ηi = e′

jΣ(κi + d̄iµ3i)/σ
2
i = e′

jδi ,

e′
j

(
Bias(β̂GMM)− Bias(β̂EL)

) = e′
jΣE[(κi + d̄iµ3i)q

′
iPqi]/n=E[ηiσ2

i q
′
iPqi]/n�

The second conclusion then follows from σ2
i q

′
iPqi ≥ 0, so that when ηi ≥ C2, E[ηiσ2

i q
′
iPqi] ≥

C2E[σ2
i q

′
iPqi] =C2(m−p). Q.E.D.

PROOF OF THEOREM 4.6: The bias formulae follow immediately from Theorems 4.1 and 4.2,
since by Gi =G,

E[G′
iPgi] =E[G′Pgi] =G′PE[gi] = 0� E[GiHgi] = E[GHgi] = 0�

To obtain the bound, note that differentiating the equality h(β) = ∫
r(z)f (z|β)dz under the

integral is allowed by the conditions, as is differentiating the identity 1 = ∫
f (z|β)dz. Twice dif-

ferentiating the second gives E[si] = 0 and E[Fi] = 0. Twice differentiating the first gives

G= −
∫
r(z)[∂f (z|β0)/∂β]dz = −E[r(zi)si] = −E[gisi]�

aj = −tr
(
Σ

∫
rj(z)[∂2f (z|β0)/∂β∂β

′ ]dz
)
/2

= −E[rj(zi)tr(ΣFi)]/2 = −E[gijtr(ΣFi)]/2�
Stacking the formulae for aj we find that for τi = tr(ΣFi), a= −E[giτi]/2, so that

Bias(β̂EL)= −ΣE[sig′
i](E[gig′

i])−1E[giτi]/2n�
Note that τ2

i ≤ p2‖Σ‖2‖Fi‖2, so that by CS,∥∥Bias(β̂EL)
∥∥ ≤ ‖Σ‖

√
E[‖si‖2]E[τ2

i ]/2n≤ p‖Σ‖2
√
E[‖si‖2]E[‖Fi‖2]/2n� Q.E.D.

PROOF OF THEOREM 5.1: In the case of GMM, the bias correction takes the form B̂ias(β̂)=
τ(

∑
i di(β̂)/n)/n, where di(β)= d(zi�β) is a vector of products of g(z�β) and its derivatives to

second order and τ is a function that is twice continuously differentiable in a neighborhood of
d0 = E[di(β0)]. Then by Assumption 3 and a standard expansion,

B̂ias(β̂)= τ(d0)/n+ τd(d0)
∑
i

ψτ
i /n

2 +Op(n
−2)�

ψτ
i = di(β0)− d0 −E[∂di(β0)/∂β]Hgi�

Then for ψ̃, Q1, and Q2 from Theorem 3.3,
√
n(β̂c −β0)= ψ̃+ [

Q1(ψ̃� ã)− τ(d0)
]
/
√
n+ [

Q2(ψ̃� ã� b̃� F0)+ τd(d0)ψ̃
τ
]
/n

+Op(n
−3/2)�

giving the conclusion for GMM. For GEL B̂ias(β̂) = τ(
∑

i π̂idi(β̂))/n. The conclusion follows
similarly for GEL, with τ and d(z�β) corresponding to the bias formula for GEL, and

ψτ
i = di(β0)− d0 −E[di(β0)g

′
i]Pgi −E[∂di(β0)/∂β]Hgi� Q.E.D.

Before proving Theorem 6.1, we will prove the following intermediate result:
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LEMMA A7: If the hypotheses of Theorem 6.1 are satisfied and zi has finite support {Z1� � � � �ZJ},
then for the bias corrected estimators, Ξ−ΞEL is positive semi-definite.

PROOF: Let nj = ∑n
i=1 1(zi = Zj) and consider the multinomial, moment restricted MLE

given by

β̂ML = arg max
β∈B�Π1�����ΠJ

J∑
j=1

nj lnΠj� s.t.
J∑
J=1

Πjg(Zj�β)= 0�
J∑
j=1

Πj = 1�

By standard theory for MLE β̂ML is consistent and there is a neighborhood N of β0 such that
w.p.a.1 β̂ML is the unique β in N solving the first order conditions. Also,

∑J
j=1 nj lnΠj is a

monotonic increasing transformation of
∑J

j=1 nj ln(Πj/nj). Let Ij = {i : zi =Zj}. Note that hold-
ing Πj > 0 fixed, by strict concavity the maximum of

∑
i∈Ij ln(πi) subject to Πj = ∑

i∈Ij πi is
nj ln(Πj/nj). Then, similarly to Section 2.3 of Owen (2001),

β̂ML = arg max
β∈B�π1�����πn

J∑
j=1

∑
i∈Ij

ln(πi) s.t.(A.23)

J∑
j=1

Πjg(Zj�β)= 0�
J∑
j=1

Πj = 1� Πj =
∑
i∈Ij

πi�

Therefore, w.p.a.1 β̂ML = β̂MD for h(π) = − ln(π). Now consider β̂EL defined as the solution
to equation (2.2). By Theorem 3.1, β̂EL is consistent, so that β̂EL ∈ int(B) and λ̂ exists w.p.a.1.
Also, similarly to the proof of Theorem 3.1 it follows that

∑n
i=1 ρ2(λ̂

′ĝi)ĝiĝ′
i/n is nonsingular

so that all the hypotheses of Theorem 2.2 are satisfied, w.p.a.1. Then by consistency, β̂EL ∈ N
and by Theorem 2.2 has the same first order conditions as β̂ML = β̂MD, so β̂ML = β̂EL� w.p.a.1.
Furthermore, from Corollary 4.3 we know that there are known functions τ(d) and d(z�β) with

Bias(β̂EL)= τ(E[d(z�β0)])/n= B(Π10� � � � �ΠJ0�β0)/n�

B(Π1� � � � �ΠJ�β)= τ

(
J∑
j=1

Πjd(Zj�β)

)
�

Then by π̂i = Π̂j/nj and β̂EL = β̂ML = β̂,

B̂ias(β̂)= τ

(
n∑
i=1

π̂id(zi� β̂)

)/
n= τ

(
J∑
j=1

Π̂jd(Zj� β̂)

)/
n= B(Π̂1� � � � � Π̂J� β̂)/n�

Thus, the EL bias estimate B̂ias(β̂) equals the MLE bias estimate obtained by plugging the MLE
into the bias formula. Since EL equals MLE, and the EL bias correction equals the MLE bias
correction, the bias corrected EL estimator is equal to the bias corrected MLE.

Next we show that the Pfanzagl and Wefelmeyer (1978) (PW henceforth) conditions for third
order efficiency of MLE relative to the other estimator are satisfied. We consider a reparameteri-
zation as in Lemma 1 of Chamberlain (1987), where it is shown that there exists a J− (m−p)−1
subvector γ of Π = (Π1� � � � �ΠJ)

′ such that for θ= (β′� γ′)′ , there is Π(θ)= (Π1(θ)� � � � �ΠJ(θ))
′
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and an open set Θ containing θ0 with

J∑
j=1

Πj(θ)g(Zj�β)= 0� Πj(θ)≥ C > 0�

J∑
j=1

Πj(θ)∂
2 lnΠj(θ)/∂θ∂θ

′ is nonsingular.

Consider the multinomial log likelihood K(z� θ)= ∑J
j=1 1(z =Zj) lnΠj(θ). In the notation of PW,

the score vector is l(z� θ)= ∑J
j=1 1(z = Zj)Πj(θ)

−1∂Πj(θ)/∂θ. Then it follows from the implicit
function theorem similarly to Lemma 1 of Chamberlain (1987) that Π(θ) is four times contin-
uously differentiable with Lipschitz fourth derivative, giving L4 and M4 of PW. Conditions (i),
(ii), (iii), and I3 of PW follow similarly, so that l(·� ·) satisfies all the conditions of Theorem 1′

of PW. Furthermore, it follows by β̂ being equal to the MLE, as shown above, and by invari-
ance of the MLE to reparameterization, that there is γ̂ such that w.p.a.1 θ̂ = (β̂′� γ̂′) satisfies∑n

i=1 l(zi� θ̂)= 0. Therefore, all the conditions of Theorem 1′ of PW for the MLE and the likeli-
hood are satisfied.

Next, consider the other GMM or GEL estimator β̂. Let θ̃ = (β̂′� γ̂′
MLE). It follows by The-

orem 3.3 or 3.4 and the previous paragraph that the estimator has a stochastic expansion as in
equation (3.1). Then equation (3.1) of PW is satisfied, without the remainder condition (which we
will not need). By Lemma A5 all the terms in the expansion are polynomials in means of random
variables, with coefficients that are Lipschitz in θ, so that the Condition B requirements on p. 5
of PW are satisfied. Furthermore, the normalizations required by PW for the random variables in
the expansion can be satisfied by adding and subtracting appropriate terms (including the mean
square projections given there). Then the expansion for θ̃ satisfies all the conditions of PW.

Finally, we show how the results of PW can be adapted to show that the higher order variance
of the bias corrected MLE is less than or equal to that of any one of the other estimators. To do
this, let Q̃1 =Q1(ψ̃� ã� F0), Q̃2 =Q2(ψ̃� ã� b̃� F0) be the terms in the stochastic expansion of any
of the estimators and

Ỹ = ψ̃+ Q̃1/
√
n+ Q̃2/n

be the expansion without the remainder. Also, for any positive definite matrixA letL(u)= u′Au.
Then, as noted in Remark 16 of PW (see also Rothenberg (1984, p. 904)), for the polynomial
(quadratic) loss function L(u) and the polynomial (in ψ̃� ã� b̃) stochastic expansion Ỹ , the ex-
pected loss computed from a formal Edgeworth expansion equals E[L(Ỹ )] + o(n−1). Then, as in
the square brackets on the top of p. 25 of PW,

E[L(Ỹ )] =
∫
χ̄n(u� v�w)L(u)dudvdw+ o(n−1)�

where χ̄n(u� v�w) is given in equation (6.15) of PW. It then follows as in the remainder of the
argument on pp. 25–26 of PW that

∫
χ̄n(u� v�w)L(u)dudvdw+ o(n−1) is minimized at the bias

corrected MLE. It is also the case that by the expression for the higher order variance Ξ in
Section 6,

E[ψ̃′Aψ̃] = tr(AΣ)�

E[Q̃′
1AQ̃1]/n+ 2E[ψ̃′AQ̃1]/

√
n+ 2E[ψ̃′AQ̃2]/n= tr(AΞ)/n+ o(n−1)�

E[Q̃′
2AQ̃2]/n2 + 2E[Q̃′

1AQ̃2]/n3/2 = o(n−1)�

so that

E[L(Ỹ )] = tr(AΣ)+ tr(AΞ)/n+ o(n−1)�
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Subtracting, we obtain∫
χ̄n(u� v�w)L(u)dudvdw= tr(AΣ)+ tr(AΞ)/n+ o(n−1)�

Therefore, tr(AΣ)+ tr(AΞ)/n is minimized at the bias corrected MLE. Since Σ is the same for
each estimator, it follows that tr(AΞ)/n is minimized at the bias corrected MLE, and thus

0 ≤ tr(AΞ)− tr(AΞEL)= tr(A∆)� ∆=Ξ−ΞEL�

Since this inequality holds for any positive definite matrix A, it follows that ∆ is positive semi-
definite. (For ∆ = BΛB′ with B′B = I and Λ a diagonal matrix of eigenvalues of ∆, let A =
B(eje

′
j+ε

∑
k �=j eke

′
k)B

′ for any ε > 0, so that tr(A∆)=Λjj +ε∑
k �=j Λkk ≥ 0 for any ε > 0 implies

Λjj ≥ 0.) Q.E.D.

PROOF OF THEOREM 6.1: By Lemma A7 it suffices to show that there is a distribution with
finite support {Z1� � � � �ZJ} such that Assumptions 1–4 are satisfied and both ΞEL andΞ have the
same values as under the true distribution. To do this, we show that there is a vector of known
functions V (z�β) and known functions τEL(·) and τ(·) such that

ΞEL = τEL
(
E[V (z�β0)]

)
� Ξ = τ

(
E[V (z�β0)]

)
�(A.24)

For GEL, it follows as in the proof of Theorem 3.4 that equation (A.12) is satisfied with θ =
(β′� λ′)′ and m(zi� θ) as given in the proof of Theorem 3.4. Then, from the higher order variance
formula given in Rilstone, Srivastava, and Ullah (1996), it follows that the higher order variance
is a known function of expectations of first, second, and third derivatives of m(zi� θ) with respect
to θ, evaluated at the truth (forming the constant coefficients in the expansion), the covariance
of m(zi� θ0) with itself and with its derivative with respect to θ (forming limn→∞ var(Q̃1)), third
moments of m(zi� θ0) and the third cross moment of derivatives of m(zi� θ0) with products of
m(zi� θ0) (forming limn→∞E[√nQ̃1ψ̃

′]), and covariance of m(zi� θ0) with itself, its derivatives,
and its third derivatives (forming limn→∞E[Q̃2ψ̃

′], including the bias correction term in Q̃2),
all of which moments exist by Assumptions 1–4. Let V (z� θ) be any finite vector including all
of these functions. Thus, equation (A.24) is satisfied for ΞEL and for any Ξ corresponding to
a GEL estimator. For GMM, it follows by the use of at least two iterations that the estimator
has the same asymptotic expansion as an estimator solving equation (3.2) with β̃ = β̂GMM, i.e.
that is fully iterated. This then is an M-estimator with m(z�θ) = (λ′∂g(z�β)/∂β�g(z�β)′(1 +
λ′g(z�β)))′ . It follows similarly to the proof of Theorem 3.4 that equation (A.12) is satisfied, so
that equation (A.24) is satisfied for Ξ corresponding to a GMM estimator.

Next, by Lemma 3 of Chamberlain (1987) there is a distribution with support {Z1� � � � �ZJ} and
probabilities Πj0 of each Zj such that for the expectation E[a(z)] = ∑J

j=1Πj0a(Zj),

E[g(z�β0)] = E[g(z�β0)] = 0�

E[∂g(z�β0)/∂β] = E[∂g(z�β0)/∂β]� E[g(z�β0)g(z�β0)
′] = E[g(z�β0)g(z�β0)

′]�
E[V (z�β0)] = E[V (z�β0)]� E[b(z)] = E[b(z)]�

Consider now the case where zi (i = 1� � � � � n) are i.i.d. with distribution F . By construction this
discrete distribution has the same ΞEL and Ξ as the true distribution. By E[b(z)] = E[b(z)]<∞
it follows that Assumptions 1–4 are satisfied for this distribution. Then by Lemma A7 it follows
that ΞEL ≤Ξ. Q.E.D.

PROOF OF THEOREM 6.2: Let gi(β) = qi(yi − x′
iβ). Note that, by comparing the proof of

Theorems 3.3 and 3.4, the M and ψi for GMM and GEL are identical. Also, in Lemma A6,
Ωβj = E[−2qiq′

ixijui] = 0, so that ψΩ
i = gig

′
i −Ω. It then follows that theA(z) in the statement of

Lemma A4 for GMM and GEL are identical to one another. Furthermore, it is straightforward to
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show thatMj = 0 for both GMM and GEL. Therefore,Q1(ψ̃� ã) coincides for the two estimators.
For b̃GMM and b̃GEL, let Q̃GMM

2 =Q2(ψ̃� ã� b̃
GMM) and Q̃GEL

2 = Q2(ψ̃� ã� b̃
GEL) denote the second

order terms for GMM and GEL respectively. From the form of Ξ given in Section 6 we see that
the difference in higher order variances for GMM and GEL estimators of β reduces to

ΞGMM −ΞGEL =D+D′� D= [Ip�0] lim
n→∞E[(Q̃GMM

2 − Q̃GEL
2 )ψ̃′][Ip�0]′�

Thus, it suffices just to calculate the difference of second order terms. Furthermore, by Ã and Q̃1

identical for GMM and GEL, the first term in the formula for Q̃2 in equation (A.10) is identical
for GMM and GEL. Also, for GEL Mj = 0 for all j so that we only have to calculate the last two
terms in Q̃2 for GEL, namely

∑q
j=1 ψ̃jB̃jψ̃/2 and

∑q
j�k=1 ψ̃jψ̃kMjkψ̃/6. For GMM, B1

j (z)= 0 and
Mjk = 0 (by linearity ofmi(θ)) from the proof of Theorem 3.3. In addition for GMM, by efficiency
of β̃� ψ̃W from Lemma A6 is equal to ψ̃, so that Q̃Ω

1 = ∑p
j=1 Ω̃βj e

′
jψ̃+ ∑p

j�k=1Ωβkβj e
′
jψ̃je

′
kψ̃k/2.

Let ψ̃β = [Ip�0]ψ̃ and ψ̃λ = [0� Im]ψ̃. We have

[Ip�0]E
[
M−1diag

[
0�

p∑
j�k=1

Ωβkβj ψ̃
β
j ψ̃

β
k/2

]
ψ̃ψ̃′

]
[Ip�0]′

= −H
p∑

j�k=1

ΩβkβjE[ψ̃β
j ψ̃

β
kψ̃

λψ̃β′] =O(n−2)�

where the last equality follows by existence of fourth moments of gi and by ψ̃β and ψ̃λ having zero
asymptotic covariance. Therefore, for Mjk and B̃j from GEL, we have, by [Ip�0]M−1 = [Σ�−H],

D=D1 +D2� D1 = lim
n→∞

E[D̃1]� D2 = lim
n→∞

E[D̃2]�

D̃1 = [Σ�−H]
{
T̃GMM +

q∑
j=1

ψ̃jB̃jψ̃/2

}
ψ̃β′� T̃GMM = diag

[
0�

p∑
j=1

Ω̃βj ψ̃
β
j

]
ψ̃

D̃2 = [Σ�−H]
{

q∑
j�k=1

ψ̃jψ̃kMjkψ̃/6

}
ψ̃β′�

Consider D̃1. Note that for j ≤ p and Ωiβj = ∂[gi(β0)gi(β0)
′]/∂βj as defined above, from equa-

tion (A.19), B̃j = −diag[0� Ω̃βj ], so that

p∑
j=1

ψ̃
β
j B̃jψ̃/2 = −diag

[
0�

p∑
j=1

Ω̃βjψ̃
β
j

]
ψ̃/2 = −T̃GMM/2�

Note also that for j > 0�

m∑
j=1

ψ̃λ
j B̃p+j

(
Ip
0

)
ψ̃β/2 = −

m∑
j=1

ψ̃λ
j

(
0

[Ω̃β1ej� � � � � Ω̃βpej]
)
ψ̃β/2 = −T̃GMM/2�
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Then,

T̃GMM +
m+p∑
j=1

ψ̃jB̃jψ̃/2 = T̃GMM/2 +
m∑
j=1

ψ̃λ
j B̃p+jψ̃/2

=
m∑
j=1

ψ̃λ
j B̃p+j

(
0
Im

)
ψ̃λ/2

= −
m∑
j=1

ψ̃λ
j

(
2
∑

i gijG
′
i/

√
n

−ρ3
∑

i gijgig
′
i/

√
n

)
ψ̃λ/2�

Then using gi = qiui , Gi = −qix′
i , and letting x̄i = −G′Ω−1qiσ

2
i � and Ki = q′

iPqi� so that ψβ
i =

Σx̄iui/σ
2
i � it follows by E[ψ̃λψ̃β′] = 0 and fourth moments bounded that

D1 = [Σ�−H] lim
n→∞

E

[
m∑
j=1

ψ̃λ
j

(
2
∑

i uiqijxiq
′
i/

√
n

ρ3
∑

i u
3
i qijqiq

′
i/

√
n

)
ψ̃λψ̃β′

]/
2

= Σ

m∑
j=1

{
2E[(u2

i /σ
2
i )qijxiq

′
iPejx̄

′
i] + ρ3E[(ε4

i /σ
4
i )qijx̄iq

′
iPejx̄

′
i]
}
Σ/2

= Σ
{
E[Kixix̄

′
i] + (ρ3/2)E[(µ4i/σ

3
i )Kix̄ix̄

′
i]
}
Σ�

Next, consider D̃2. Let Pjk denote the (j�k)th element of P . We have by linearity of gi(β) in β,
equation (A.22),

m∑
j�k=1

PjkMp+j�p+k[Σ�0]′ =
m∑

j�k=1

PjkE

[( −G′
ieje

′
kGi −G′

ieke
′
jGi

ρ3gi(gije
′
kGi + gike

′
jGi + gijgikGi)

)]
Σ

= −
m∑

j�k=1

Pjk

(
2E[xix′

iqijqik]
3ρ3E[σ2

i qixiqijqik]
)
Σ

= −
(

2E[Kixix
′
i]

3ρ3E[σ2
i Kiqix

′
i]
)
Σ�

Also, by equation (A.21),
∑m

j=1 qijPej = Pqi , and
∑p

k=1 xike
′
kΣ= x′

iΣ,

m∑
j=1

p∑
k=1

Mp+j�k

(
0
P

)
eje

′
kΣ

= −
m∑
j=1

p∑
k=1

E

[(
G′
iejg

k′
i + +GijkG

′
i

−ρ3[Gijkgig
′
i + gij(g

k
i gi + gig

k′
i )]

)]
Peje

′
kΣ

= −
m∑
j=1

p∑
k=1

(
2E[xiq′

iqijxik]
3ρ3E[σ2

i qiq
′
iqijxik]

)
Peje

′
kΣ

= −
(

2E[Kixix
′
i]

3ρ3E[ε2
i Kiqix

′
i]
)
Σ�

Note that for j� k ≤ p� for GEL in a linear model the left block of Mjk is zero, so that
Mjk[Σ�0]′ = 0 and hence MjkE[ψiψij] = 0. Also, by standard V-statistic calculations and
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Mjk =Mkj ,

D2 = [Σ�−H] lim
n→∞E

[
q∑

j�k=1

ψ̃jψ̃kMjkψ̃ψ̃
β′
]/

6

= [Σ�−H]
{

q∑
j�k=1

E[ψijψik]Mjk

(
Σ
0

)
+ 2

q∑
j�k=1

MjkE[ψiψij]E[ψikψ
β′
i ]

}/
6

= [Σ�−H]
{

m∑
j�k=1

PjkMp+j�p+k

(
Σ
0

)
+ 2

m∑
j=1

p∑
k=1

Mp+j�k

(
0
P

)
eje

′
kΣ

}/
6

= −Σ{
E[Kixix

′
i] + (3ρ3/2)E[Kix̄ix

′
i]
}
Σ�

Then summing D1 and D2 gives the first conclusion. For the second conclusion, note that Ki ≤
q′
iΩ

−1qi ≤ Cq′
i(E[qiq′

i])−1qi ≤ Cζ(m)1/2 for ζ(m) = {supx∈X q(x)
′(E[qiq′

i])−1q(x)}2. Then since
−G′Ω−1 are the population least squares coefficients from a regression of xi/σ2

i on qi ,∥∥E[Kixi(x̄i − xi)
′]∥∥2 ≤ E

[
K2
i ‖xi‖2]E[‖x̄i − xi‖2]

≤ Cζ(m)E[‖xi‖2]E[
σ4
i ‖(−G′Ω−1)qi − xi/σ

2
i ‖2

]
≤ Cζ(m)E

[‖(−G′Ω−1qi)− xi/σ
2
i ‖2

]
≤ Cζ(m)E

[‖γmqi − xi/σ
2
i ‖2] → 0�

It follows similarly that E[Kix̄i(x̄i − xi)
′] → 0, giving the second conclusion. Q.E.D.
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