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Abstract

We review a number of methods proposed in the literature for fitting a stochastic volatility (SV)
model; namely, the Generalised Method-of-Moments, the Quasi-Maximum Likelihood method, the
simulated EM algorithm and we concentrate on Bayesian approaches which utilize Markov chain
Monte Carlo methods. In addition, we discuss the advantages and drawbacks associated with each
of these procedures. Although univariate SV models have undergone a lot of research, the literature
on multivariate models is limited. We review the Constant Conditional Correlation and the Factor
SV models. Since both models impose a deterministic relation between variances and covariances,
we consider them to be too restrictive. As possible alternatives, we suggest different models based
on the Wishart distribution, which allow for a stochastic evolution of the covariance matrix and we
discuss their properties.

1 Introduction

Volatility modelling plays an important role in the analysis of financial time series. One of the most
well-known effects exhibited by the variance of financial products, such as stock or exchange rate returns,
is the volatility clustering phenomenon. Essentially, this means that the variance of the returns exhibits
high serial autocorrelation, which becomes evident by observing in the markets periods of high volatility,
with large changes in the returns of an asset being followed by large ones, and periods of low volatility
where small changes are followed by small ones. As this observation obviously is of great importance,
researchers concentrated in developing and studying models which capture this effect. This is the reason
why univariate stochastic volatility (SV) and Autoregressive Conditional Heteroscedasticity (ARCH)
type models have been introduced and undergone a lot of research during the last two decades.

Apart from the volatility clustering phenomenon, there are other important stylized facts associated
with financial returns series. Since the early sixties, both Mandelbrot (1963) and Fama (1965) have noted
the fat-tailed nature of returns and it is now well known that the returns from an asset exhibit excess
kurtosis and have heavier tails than the normal distribution. In addition, for stock-returns we often
observe the so-called ‘leverage’ effect. This causes the conditional variance to respond assymetrically
to rises and falls of the asset price, with negative returns producing a rise in volatility and vice versa.
A final stylized fact, which cannot be captured by univariate descriptions is the covariation effect.
Volatilities of different financial series are often seen to move together and large changes in one asset are

matched by large movements in another. This is the result of either a formal linkage between a set of



assets, eg. currency exchange rates, or due to the assets being subject to the same overall environment
and as a result, having factors in common which influence their behavior.

The ultimate goal of this report is the study of multivariate SV models, which have undergone far less
research than the univariate case. Apart from the well-established constant conditional correlation (see
Harvey et al. (1994)) and multivariate factor SV models (see Pitt & Shephard (1999)), other possible
alternatives seem also suitable to describe the time evolution of the joint distribution of different assets.
However, a thorough understanding of the properties and estimation procedures developed for the
univariate SV model is imperative, before we can extend the ideas to a multi-dimensional equivalent.
For this reason, the rest of this section discusses the univariate SV model and its properties, section 2
reviews some of the methods proposed in the literature for the estimation of the model and discusses
advantages and drawbacks associated with each of these. Section 3 reviews the properties of the constant
conditional correlation and factor SV models and discusses other potential options built on the Wishart

distribution. Finally, section 4 concludes and offers guidelines for future research.

1.1 The univariate SV model

Although ARCH type models are now used routinely and are easy to estimate, there are also a number
of drawbacks associated with most of these models. Nelson (1991) notes two of these. Firstly, the
constraints imposed on the parameters of these models, to ensure the positivity of the conditional
variance, are often violated during the process of estimation. Secondly, a random oscillatory behavior
of the conditional variance process is ruled out.

The basic alternative to ARCH type models is the stochastic volatility (SV) model due to Taylor
(1986) which allows the variance of the returns to be an unobserved random process. SV models
overcome the drawbacks encountered with ARCH models and fit more naturally into the theoretical
framework within which much of modern finance theory has been developed. In particular, as shown
for example in Taylor (1994), SV models can easily be seen to have simple continuous-time analogues
used for option pricing. Moreover, their form nests them into the class of state-space models, studied
extensively by Harvey (1989) and West & Harrison (1997). If we let 4 denote the return from an asset

at time ¢, the most popular SV parameterization sets

ye = exp(h/2)e (1.1a)
he = v+ dhi—1 +ny (1.1b)

where the &;’s and 7,’s are 1.i.d. N (0,1) and N (0, 0727) random variables, respectively. Because the SV
model, allows the log of the volatility to evolve, it is ensured that the variance of the process always
remains positive without the need of further constraints.

The latent process h; in (1.1) can be interpreted as the random and uneven flow of new information
in financial markets, while ¢ as the persistence in the volatility. There are also alternative parameteri-
zations of the SV model. For example, Jacquier et al. (1994) model the log of h; as an AR(1) process
so that y; = /e and loghy = v + ¢loghy_1 + 1, which is clearly equivalent to (1.1). Alternatively,

we can write y; = fexp (h;/2) e, where § is a constant scaling factor and can be thought of as the



modal instantaneous volatility. The inclusion of the term [ in (1.1a) removes the need of including the
constant term 7 in the AR(1) process (1.1b) so that hy = ¢hy—1 + 1.

The advantage of using SV models lies in the fact that they provide greater flexibility in describing
stylized facts. Many financial series are often found to exhibit a kurtosis which is greater than the
one resulting by incorporating conditional heteroscedasticity into a normal process. This effect can be
incorporated in SV models by allowing &; in (1.1a) to have a Student ¢-distribution. This generalization
has been studied, amongst others, by Ruiz (1994), Harvey et al. (1994), Chib et al. (2002) and Jacquier
et al. (2004). In addition, although most ARCH type models fail to accommodate for the ‘leverage’
effect, the latter phenomenon can also be described by the SV model by introducing a negative contem-
poraneous correlation between the errors 1, and &, in (1.1), an extension studied by Harvey & Shephard
(1996) and Jacquier et al. (2004).

Before we proceed to describe how the SV model can be estimated, we discuss its basic properties.
Throughout we assume that the errors, e; and 7, in (1.1) are independent and Gaussian. The process hy
in (1.1b) is a standard Gaussian AR(1) process and if |¢| < 1, hy is strictly stationary with unconditional

mean and variance given respectively by

0_2

up, = FE (hy) = —7 and o2 =Var (h) = 1—"¢2

- (1.2)

Since y; is the product of two processes, white noise and exp (h¢/2), y; is stationary if and only if h; is
stationary. Thus, the restrictions needed to ensure stationarity of y; are just the standard restrictions
that ensure stationarity of an AR(1) process. Moreover, since the &,’s are, by definition, zero mean
iid., E(y) = E(yt | ¥4—1) = 0. Thus, y; is zero mean and in addition, given the independence of ¢
and 7, the autocovariance function (ACVF) of y; is

hy  hir

s (1) = E (yeye—r) = B {eXp (5 il

)] Eleerr] =0, |7 >0.

Therefore, the series y; is a martingale difference (see Grimmett & Stirzaker (2001) for the definition).
Furthermore, since the distribution of ¢; is symmetric, as is the standard normal or even the Student-t,
all the odd moments of y; are zero.

We now investigate the even moments of ;. Assuming |¢| < 1, hy ~ N (,uh, U%) and hence, exp (h;)
is log-normal distributed. In addition, from standard properties of the log-normal distribution, we have
E [exp (ht)j } = exp { g + % jQU%}, so that, if r is even and h; is stationary, all the even moments of y;

exist and are given by

B0 = (s ] £l = ex0 {5+ 5ok} 5 (13)

In particular, from (1.3) we deduce that

Var (y) = E [(yt)Q] = exp {uh + %aﬁ}



and hence, that, if h; is stationary, y; is a white-noise process. = The fourth moment is
E {(yt)zl] = 3exp {2y, + 202} and so the coefficient of kurtosis for y; is —3 + E (y) /E* (v7) =
3 (exp (0%) — 1) > (0. Thus, y; has a leptokurtic, symmetric distribution.
The dynamic properties of the SV model appear most clearly if we square y; and take logarithms,
so that
logy? = h; + loge?. (1.4)

If &; has a standard normal distribution, then (see Abramowitz & Stegun (1970)) loge? has a log-chi-
square distribution with mean 1 (1) — log2 ~ —1.2704 and variance 72/2 ~ 4.9348, where 1 (-) is the
digamma function. Thus, if we define &, = loge? + 1.2704, then clearly &, is zero mean i.i.d. with

variance 72/2 and we may rewrite (1.4) as
logy? = —1.2704 + hy + &,. (1.5)

Therefore, it follows that logy? is a linear process which is the sum of the AR(1) process h; and white
noise. Hence, it behaves approximately like an ARMA(1, 1) process, with its autocorrelation function
(ACF) being equivalent to that of an ARMA(1,1) process and given by (see Ghysels et al. (1996))

¢T

plogyt2 (7_)
A detailed discussion on the properties of the SV model and the corresponding moments for the
case with fat-tailed errors appears in Ghysels et al. (1996). Next, we proceed with the estimation of the

model.

2 Estimation of the SV Model

One of the most important limitations of SV models is that, unlike ARCH-type models, the distribution
of y; conditional on W¥; 1 does not possess an analytic expression. As a result, the likelihood function
is hard to evaluate. One way of deriving the likelihood is by integrating the latent log-volatilities
out of the joint probability distribution. Let us denote y = (y1,...,yr) the vector of T' consecutive
observations, h = (hy, ..., hr) the vector of corresponding log-volatilities and @ = ('y, o, 0,27) the vector

of hyperparameters. Then, the likelihood is given by

£(y:0) =/p<y,h|0>dh=/p<y | h,0)p(h | 0)dh. (2.1)

This last integral is of dimension equal to the sample size, T', its evaluation requires the use of numerical
procedures and this makes the estimation of the hyperparameters, 8, via Maximum Likelihood quite
involved. Various methods have been proposed during the last decade for the estimation of SV models.
Most involve the estimation or approximation of the integral in (2.1) and others make use of the
method-of-moments procedures. Surveys on the estimation of SV models can be found in Shephard
(1996), Ghysels et al. (1996) and Broto & Ruiz (2004).

One of the early methods proposed for the estimation of general non-linear, non-Gaussian parameter-



driven models and probably the one that is conceptually more straightforward is due to Kitagawa (1987).
He suggested using numerical integration techniques to approximate the integral in (2.1). This method
can be considered as an extended Kalman filter (cf Anderson & Moore (1979)). However, as Shephard
(1993) and Tanizaki & Mariano (1998) point out, numerical integration suffers from a number of draw-
backs such as accumulation of computational errors, long computational time and tedious programming
especially in higher-dimensional cases. Therefore, the estimation of multivariate SV models for example,
via this method is ruled out.

Another approach that is in a similar spirit to the latter procedure uses stochastic integration. The
method was initially proposed by Geweke (1989) for general econometric models and was later refined
and applied to the SV model by Sandmann & Koopman (1998) and Danielsson (1994). It is well
known that Monte Carlo integration deals better with higher dimensions and is easier to implement
compared to deterministic numerical integration techniques. Nonetheless, the procedure suffers too from
the accumulation of computational errors on top of which stochastic errors are also added. In general,
numerical integration techniques, which try to approximate the integral in (2.1) and then maximize
the estimate with respect to the parameters, have not met great success in the SV literature. In what

follows, we review some popular procedures adapted for the estimation of the SV model.

2.1 Generalized Method-of-Moments (GMM)

The simplest estimation procedure of SV models is the Method-of-Moments suggested by Taylor (1986).
Later, Melino & Turnbull (1990) proposed to estimate the unknown parameters via the Generalized
Method-of-Moments procedure, due to Hansen (1982). The key advantage of GMM is that it does not
require the specification of the likelihood function, but only certain moment conditions are needed. The
method is based on the fact that the theoretical population moments should approximately match the
corresponding sample values.

More precisely, given a sample y = (y1,...,yr), the GMM procedure requires the minimization of

the criterion function Q = ¢’ Wg with respect to 8 = (’y, o, 0727), where

1 1
_ [?ny—E(yf),?Zy?— (4) sztyt 1 — E (yivi) sztyt - = E (i)

(the theoretical values of E (y7y7_,), for 7 > 1, can be found in Taylor (1986) or Ghysels et al. (1996))
and W is a (7 +2) x (7 + 2) positive definite, symmetric weighting matrix reflecting the importance
given to matching each of the moments. Thus, the larger the (1,1) element of W, the greater is
the importance of the unconditional variance of the observations being as close as possible to the
unconditional sample variance. Normally () will be minimized using numerical optimization procedures.
A discussion on the GMM procedure and possible choices for the weighting matrix can be found in
Hamilton (1994).

Empirical applications of the GMM approach in the context of SV models can be found in Melino
& Turnbull (1990), Ruiz (1994), Jacquier et al. (1994) and Andersen & Sorensen (1996). The great
advantage realised by using the GMM method is that the likelihood function in (2.1) does not need to

be computed. However, this can also be a drawback in that GMM often does not make efficient use of



all the information contained in the sample.

It can be shown (cf Hansen (1982)) that the GMM estimator is consistent and asymptotically
normal. On the other hand, GMM is asymptotically consistent if the observations y; are stationary.
When the persistence in the latent process, hy, is high, i.e. ¢ is close to unity, as is usually the case

in practice, the GMM estimator works poorly. In their simulation studies Jacquier et al. (1994) find

2
7’

large root mean squared errors, when there is high persistence and low coeflicient of variation, defined as
C.V. = Var[exp (h)] / {E [exp (ht)]}?. Another drawback to the GMM procedure is that the parameter

estimates are not invariant, meaning that if the model is reparameterized so that 9 = f (), then

substantial bias in their estimates, especially for o2, and report sampling variability, which results in

'I,Ab +f (5) This is important because it means that estimation based on different parameterizations
but on the same dataset will yield inconsistent results.

Finally, another disadvantage of the GMM estimation is that it does not deliver filtered or smoothed
estimates of h; and therefore, a second estimation procedure needs to be used, eg. the Kalman filter, in
order to obtain these. Nonetheless, it should be pointed out that the simplicity of the GMM procedure
and the fact that it can deal with both standard normal and t-distributed observation errors makes it

an attractive estimation method.

2.2 Quasi-Maximum Likelihood (QML) estimation

A simpler approach that yields both estimates of the hyperparameters as well as filtered and smoothed
estimates of h; was proposed by Harvey et al. (1994). The method is based on the linearized form of
the SV model. Assuming that the errors g, ~ N (0,1) and denoting w; = logy?, as already seen, the

SV model can be written as

we = —1.2704+ hy + &, (2.2a)
hy = v+ dhi—1+mny, (2.2b)

where &, = loge? — E (loge?), with 02 = Var (&) = n%/2. Clearly, the model in (2.2) is a linear
state-space model, as defined by Harvey (1989), but non-normal since the errors, £, in the observation
equation (2.2a) do not have a normal distribution. In addition, it should be noted that even if €; and 7,
had been contemporaneously correlated in the initial formulation (1.1) of the model, then (see Harvey
et al. (1994)) it can be proved that &, and 7, are uncorrelated. This is because the original observations
are squared and thus all the information on the dependence between ¢; and 7, is lost.

The idea of the QML estimation method is to treat the observation errors, £;, as though they were
iid N (O, 72/ 2) and apply the standard Kalman filter equations to the state-space model in (2.2). The
Kalman filter (see Appendix A) will produce one-step-ahead forecasts of the observations, w, and the
log-volatilities, hy, as well as filtered estimates of the latter. Given a set of observations, the recursions
can also be used to construct the Gaussian likelihood of the data via the prediction error decomposition,
as shown in Harvey (1989). This Gaussian form of the likelihood can then be maximized with respect
to the parameters of the model, typically using numerical procedures, to yield QML estimates of the

unknown parameters. Before proceeding with a more detailed description of the method, we make one



more simplifying transformation of the model in (2.2), following Ruiz (1994).
Let us consider E (w;), assuming that |¢| < 1 in (2.2b), so that h; is stationary. Clearly, E {w;} =
v = —1.2704 4+ p;, = —1.2704 + v/ (1 — ¢). Moreover, if we denote w; = wy —v* and oy = hy — py, to

be new mean-centered observations and states respectively, then the model (2.2) can be rewritten as

wp = art&, (2.3a)
o = pay_1+ 1. (2.3b)

The latter state-space model does not explicitly contain the constant term ~ of the state-transition
equation (2.2b). A consistent estimator of v* is given by the sample mean of w; = log y? and is also the
QML estimator of v*. We can now apply the Kalman filter to the model in (2.3) and obtain the QML
estimates of 6 = (gb, 0,27)/. Once the estimates ¢ and 0727 are available, the QML estimator of « will be
given by v = (1 —¢) (1.2704 + 7 > log 7).

We now concentrate on the estimation of 8 = (gb, 0727)'. The Kalman filter recursions compute the
one-step-ahead prediction, as;_1, and the filtered estimates, a;, of the unobserved states o assuming
that the observations sequentially become available. In particular, since |¢| < 1, the states oy are
stationary and the recursions are started off with the unconditional mean and variance of «;. Thus,
starting with agp = E(a;) = 0 and Py = Var () = o5/ (1 - ¢?), the one-step-ahead prediction

estimates of ay and their mean square errors (MSE’s) are respectively given by (cf Harvey (1989))
Q1 = dar_1j—1, Pyo1 = ¢*Prqp1+o,, t=1,...,T, (2.4)
while the filtered estimates, a;, and their MSE’s, P;;, are respectively given by
Qy|t = Qgft—1 + Pt|t71ft_1 (wi‘ - at|t—1) ) Pt|t = Pt|t71 - Pt2|t71ft_la t=1,....T, (2.5)

where the terms w; — a;;_; are the innovations in predicting wy given the past information
vy = {U’Zk—p e ,w{} and fy = Py_1 + og are the MSE’s of the one-step-ahead prediction estimates
of wy. It should be noted that, since the errors &, are not truly Gaussian, the filtered and smoothed
estimators ay;_1 and ay; are only minimum mean square linear estimators (MMSLE’s) of the unob-
served variable oy, given the observations up to time ¢ — 1 and ¢, respectively. By this we mean that
the estimators ay;_; and ay; are only optimal in the sense that they yield the minimum MSE within
the class of all linear estimators.

In addition, if we treat the observations w; as though they were indeed Gaussian, then their mean
and variance conditional on Wi are respectively given by a;;_; and f;. Consequently, we can construct

the Gaussian log-likelihood, called the quasi-log-likelihood function:

* T 1 T 1 T ('U)Zk — at|t_1)2
1, (6;w ):—Elog(Qﬂ)—ﬁz:logft—aZT. (2.6)
t=1 t=1

Maximizing (2.6) with respect to 8, typically using a numerical optimization procedure, yields the

corresponding QML estimates. The QML estimators of 8 are consistent with asymptotically normal



distribution; see Ruiz (1994). Moreover, once the QML estimates of 6 have been computed, starting
with the final filtered estimate app and its MSE Pryr, the following backward recursions (see Anderson
& Moore (1979)) produce the smoothed estimates ayr of oy along with their MSE Py

Ay = Ayt + ¢Pt|tptjrll|t (at+1|T - ¢at|t) (2.7a)
Pyr = Py + ¢2Pt2|tptfl|t (Pesar = Pgape), t=T-1,...,1 (2.7b)

Also note that the QML procedure can be applied to the SV model when ¢ is set equal to one
and the log-volatilities follow a random walk. The procedure is the same as before and only slight
modifications need to be made. The fact that the Kalman filter can be applied even when the log-
volatilities are allowed to follow a random walk is an obvious advantage of the QML estimation over
the GMM estimation procedure. Secondly, it makes the QML procedure quite general, in the sense that
the dynamics of the latent process can take many different forms. Furthermore, the QML estimation
is not restricted only to the case when ¢, ~ N (0,1), but with minor modifications can also be used
to estimate a SV model with g; ~Student-t; see Harvey et al. (1994). Finally, it should be noted that
an asymmetric SV model, where the errors ¢; and 7, are correlated, can still be estimated via the
QML procedure, despite the fact that when squaring the observations, the relevant information on the
dependence between ¢; and 7, is lost; see Harvey & Shephard (1996).

To sum up, let us discuss some of the advantages and drawbacks to the QML estimation. From the
discussion so far, it has been obvious that the QML method is simple to implement and computationally
efficient. Furthermore, since the QML estimation procedure depends only on first and second order
moment properties, it can be applied without modification if the distribution of the error terms changes
and allows the dynamics of the unobserved components to take many different forms. Harvey et al.
(1994) show also how the method can be generalized to multivariate SV models. The method produces
filtered and smoothed estimates of h; and in addition, missing or irregularly spaced observations can
also be handled via the Kalman filter. Finally, the QML estimators are consistent and in most practical
applications as in Ruiz (1994), Jacquier et al. (1994), it can be seen that they outperform in terms of
efficiency the corresponding GMM estimators.

On the other hand, the QML procedure can be termed inefficient because it does not rely on the exact
log-likelihood, but approximates the density of a log (X%) variable by a normal density. A comparison of
these densities, as in Figure 1, illustrates that this approximation is rather inappropriate. In particular,
the adequacy of the approximation depends critically on the true parameter values. For large values of
0727, the AR(1) process, h:, dominates £;, the non-Gaussian error term in the observation equation, so that

the normal approximation may be adequate and the QML approach is close to optimal. Nonetheless,

2
777
QML estimates can be extremely biased and have high root mean square error.

as 0727 decreases, the approximation worsens and for small values of ¢2, usually found in practice, the

As an illustrative example of the precision of the QML method, we have generated a sample of 1,000
values from a SV model with parameters v = 0, so that u, = v/ (1 —¢) =0, ¢ = 0.9 and U% =0.1.
The size of the sample is typical for financial data, as are the chosen parameter values. We use the
simulated annealing algorithm to find an approximate maximum of the quasi-likelihood function (2.6).

Figure 2 shows plots of the generated samples of ¢ and 0,27 once the algorithm has converged, with
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Figure 1: Comparison of the log (x}) density (thin solid line) with the N (0,72/2) density (thick solid
line).

the straight horizontal lines indicating the true value of the parameters. It is readily seen that the QML
estimate of ¢ exhibits a small positive bias while the corresponding estimate of 0,27 is quite accurate. In

fact, the mean of the sample obtained for ¢ is equal to 0.9162 while the corresponding sample mean

2
n

for p; results in a value equal to 0.1133 while the estimate for ~ is obtained by the transformation

for o2 is equal to 0.0967, an estimate which does not exhibit any significant bias. Finally, the estimate
v = (1—¢) py, and turns out to be equal to 0.0095, which is quite accurate.

As already noted, apart from estimating the parameters of a SV model, it is often desired to obtain
also estimates of the unobserved volatilities. Since our series of data points has been simulated, this
means that we actually do have access to the latent volatility process and this in turn gives us the
opportunity to gain some insight in the precision of the QML method in terms of smoothing. Using the
estimates of ¢ and 0727 and the recursions (2.7), we produce smoothed estimates of the volatilities which
are plotted along with the corresponding true values in Figure 3. As noted earlier, the fixed interval
smoothing algorithm yields only MMSLE’s of the undelying volatility process and therefore, we should
not expect great accuracy from our estimates. This is readily seen in Figure 3, where the estimated
volatilities do trace the true values in some regions but in general, when compared to the true volatility
process they do not exhibit the same variability.

Finally, a drawback to the QML procedure worth noting is the so-called ‘inlier’ problems encountered
by taking logarithms of very small numbers. In particular, when the asset returns, y, are close to zero
logy? is a large negative number and in the extreme case where y; = 0, logy? is not defined. For the

cases where the inlier cannot be assumed to be an irregular observation, researchers have proposed two
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possible solutions to the problem. Kim et al. (1998) suggested adding a small constant ¢ to the squared
observations and work with log (7 + ¢). Fuller (1996), on the other hand, suggested working with the

series
5s?

wy = log (v2 + 6s%) — ———,
t g (yt + ) %2 + (582

where s? is the sample variance of y; and ¢ is a small constant specified by the researcher. Following the

latter suggestion, Breidt & Carriquiry (1996) investigated the modified transformation. Their results

showed that the improved QML estimator performs better in terms of bias but still has a relatively high

root mean square error.

2.3 Bayesian Approaches of estimation

An alternative approach that has become attractive for the estimation of SV models is the Bayesian
one. Adopting a Bayesian view to the problem of estimation of the unknown parameters, 6, in a model,
effectively means that we initially treat @ as a random variable with a distribution, known as the prior
distribution, over the parameter space, ©. The prior distribution, 7 (@), reflects the a priori degree
of belief about 8 without having observed any data, Y. After we have collected a set of data, Y, we
update our degree of belief about 6, using Bayes’ Theorem, and obtain the posterior distribution of the

parameters, denoted p (0|Y) and given by

p(0]Y) = xp(Y|0)m(0). (2.8)
Using the posterior distribution of 6, we can draw inferences regarding the model that is assumed to
have generated the data. For more details on Bayesian statistics, we refer the reader to O’Hagan (1994)
and Bernardo & Smith (1994). Before we proceed with describing the Bayesian analysis of the stochastic
volatility model, we should note that the main drawback of the Bayesian approach is the computational
complexity.

The posterior density does not necessarily need to be of standard form. One might often face
difficulties in the calculation of the normalizing constant, which is usually a high dimensional integral,
or in the computation of posterior marginal densities of a particular element of the parameter vector. A
closed form solution to these integrals might not exist and consequently, inference becomes hard. One
way to overcome the problem of computational complexity is via sampling methods, such as rejection
sampling, Markov Chain Monte Carlo (MCMC) and Monte Carlo integration; see Robert & Casella
(1999).

2.3.1 Single-Move MCMC Samplers for the SV Model

The estimation of the SV model via MCMC methods was initially proposed by Shephard (1993) and
Jacquier et al. (1994) and has since been extensively used. The main idea is to treat the SV model
as a hierarchical structure of conditional distributions. Letting 8 = (’y, o, 0727)’ denote the vector of
hyperparameters, h = (hq,...,hr)" the vector of log-volatilities and y = (yi,...,yr)" the vector of

observations, the hierarchy is specified by the sequence of three conditional distributions. The first

11



is the distribution of the observations conditional on the log-volatilities, p (y|h), the second is the
distribution of the log-volatilities conditional on the hyperparameters, p (k|@), and the third is the prior
distribution of the hyperparameters, p(0). In this sense, using Bayes’ theorem, the joint posterior
distribution of h and 0 is p (h,8|y) < p(y|h)p (h|0)p ().

The intuition behind this idea is that, in a Bayesian framework, the posterior distribution of @ is
given by the product of the likelihood of the observations y and the prior distribution of 8. However,
as already noted, the likelihood function (2.1) for the stochastic volatility model is intractable and
consequently, the direct analysis of the posterior density p (0|y) via MCMC methods is ruled out. To
overcome this problem, the vector of hyperparameters 8 is augmented with the vector h of the latent
log-volatilities. Therefore, if we focus instead on the posterior density p (6, h|y), we can employ MCMC
techniques to obtain samples from this density without having to compute the likelihood function (2.1).

There are several procedures that one could use in order to sample from p (8, h|y). The most popular
and probably the most suitable of these is the Gibbs sampler. The posterior density p (6, h|y) is highly
multivariate and the Gibbs sampler provides the flexibility to split a high-dimensional problem into
lower dimensional ones. The idea therefore is to produce samples alternating between the posterior
densities p (h|y, @) and p (0|y, h) so that these will converge to samples approximately generated from
p (0, hly). The general form of the Gibbs sampler for the stochastic volatility model proceeds as follows.

Algorithm 2.1 (Gibbs sampler for the SV model) Choose arbitrary starting values h(o), 09 and
let i =0.

1. Sample K1) ~ p (h,\y, H(i)).

2. Sample D) ~ p (0[@/, h(”l)).
3. Seti=1+1 and goto 1.

Step (2) of algorithm 2.1 is relatively simple to compute. On the other hand, sampling from
D (h| Y, H(i)) is not that straightforward. Single-move algorithms circumvent this difficult part of the pro-
cedure by decomposing further the density p <h|y, O(i)) into the conditionals p (ht|h§? , Y, O(i)), where
hg? = (hg”l),...,hgil),hgl,...,hg)). Thus, step (1) of algorithm 2.1 becomes: for t = 1,...,T,
sample hgiﬂ) ~ D (hﬂh@, Y, O(i)). Several suggestions exist in the literature as to which sampling

method should be employed in order to generate hi”l) ~ D (hﬂh@, Y, O(i)). The common feature of
all single-move algorithms is that they exploit the Markovian structure of the log-volatilities process,

which allows one to write (for ease of notation we drop the superscripts)

p (helhe, y,0) = p(helhe—1,hes1,y:,0) (2.9a)
o< p(ytlhe) p (het1lhe, 0) p(hilhi—1,0). (2.9b)

Suggestions as to how sampling from (2.9) should proceed include those by Shephard (1993), Jacquier
et al. (1994), Shephard & Kim (1994), Geweke (1994), Shephard & Pitt (1997) and Kim et al. (1998).

We further detail three of these methods due to their increased efficiency and ability to generalize to
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other cases. We only discuss the case of the SV model with uncorrelated Gaussian errors; the reader is

referred to Jacquier et al. (2004) for the asymmetric SV model.

Rejection Metropolis-Hastings A first approach to the estimation of the SV model via MCMC
is that of Jacquier et al. (1994), who built on the work of Carlin et al. (1992). Jacquier et al. (1994)

concentrated on the following parameterization of the SV model:

Y = \/htEt, (210&)
loghy = ~v+¢loghi—1+mn,, t=1,...,T, (2.10b)

where ¢; and 7, are contemporaneously and serially independent random variables with distributions
N (0,1) and N (0,0727), respectively. In addition, it is assumed that |¢| < 1, so that the model is
stationary. In (2.10b) the logarithm of the latent volatilities follows a stationary, Gaussian AR(1)
process, so that log hy|hi—1,0 ~ N (’y + ¢log hy—1, 0727), and hence

1 log hy — v — ¢log hy_1)?
p(ht\ht—l,a)mh—texp{—( ghy — 7 — ¢loghi 1) }

2
2077

In addition, noting that from (2.10a) y.|hs ~ N (0, hy), it is easy to deduce that

1 y? 1 (log his1 = — ¢plog hy)* + (log hy — v — ¢plog hy 1)
XX Wexp{—Q—ht}xh—texp{— 20_127 .

After some algebra, (2.11) can be rewritten as

1 y? 1 (log hy — mt)2 B
P (ht\h\t, y,H) x W exp {_Z_ht} X T exp {—T = f(h), (2.12)

1= 0) o lomhns Floghis) g 2
(1+¢7)

g
Obviously, the posterior distribution of h; in (2.12) is not a standard, well-known density and hence we

where my =

cannot sample from it directly. One solution to this problem is to use rejection sampling. However, this
method requires a density ¢ (-) and a constant ¢ such that f (z) < cg (x) for all z. Jacquier et al. (1994)
argued that it was difficult to find a density g that satisfies this last condition for all h; and also does
not reject a large number of draws. In addition, they maintained that, even if it were possible to find
such a density g, the algorithm would be computationally slow, because the constant ¢ would depend
on the conditioning arguments, which vary as the sampler progresses and hence it would be required to
solve an optimization problem for each time ¢ in the sample.

The solution proposed by the authors was to place rejection sampling within an independence M-H
algorithm; see Tierney (1994) or Chib & Greenberg (1995). The idea is to find a density g and a constant
c such that p (x]h\t, Y, 0) < ¢g (), but not necessarily for all z, so that g is a pseudo-dominating density.
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For each time ¢, proposals x; are generated from the density g, until one of this proposals is accepted
with probability min {1, P (xt\h,i?, Y, 0) /cg (a:t)} The accepted z; then enters an independence M-H

accept-reject step and we set h§i+1) = x; with probability

D (a;ﬂhi?, Y, 0) min {p (hgi)|h§?, Y, 0) ,cq (hgl))}

p (h 10y, 0) min {p (wIn(}, 4.0) g (w) |

min |1,

If ; is not accepted, then th) = hgi).

Thus, the problem of sampling from (2.12) is reduced to finding the pseudo-dominating density g and
choosing accordingly the constant c. Jacquier et al. (1994) observed that the posterior density of h; in
(2.12) can be seen as the product of two densities, an improper inverse-gamma density, IG (—0.5, 0.5yt2),
and a log-normal one. Their suggestion was to approximate the log-normal part of (2.12) by an inverse-
gamma density, IG (o, 8,;), with the same mean and variance. This amounts to setting

1 —2exp (03)

a= and ;= (o —1)exp (m; + 0.502) .

1 —exp(02)
Moreover, the product of the two inverse-gamma densities gives an inverse-gamma pseudo-dominating

density g with

g (z0) x;(a+0.5+1) exp {_5t —1—33(3/.5%2 } '

Finally, Jacquier et al. (1994) proposed an ‘ad hoc’ rule for selecting the constant c¢. It should
be noted that the choice of ¢ has a dual effect on the algorithm, in the sense that it governs how
often proposals x; are accepted in the rejection sampling step and also how often repeats are produced
in the M-H step, i.e. how often we set hgiﬂ) = hgi). Jacquier et al. (1994) suggested that a more
informative chain of log-volatilities is produced if repeats are avoided, which implies that more effort
will be required for a draw from g to be retained. According to the authors’ practical experience, a good
choice is ¢ = 1.1 x p (a:ﬂhi?, y,H) /g (x7), where 7 = N/ (v + 1) is the point at which the inverse-
gamma density g attains its mode. Jacquier et al. (1994) claimed that this ¢ results in an acceptance
rate between 70% and 80% in the M-H step. For details on how the procedure can be extended to cover
the cases of correlated and t¢-distributed errors, the reader is referred to Jacquier et al. (2004).

A similar Bayesian approach for the estimation of the SV model is due to Shephard & Pitt (1997).
They maintained that the method proposed by Jacquier et al. (1994) was inefficient for the following

reason. The posterior density p (ht|h\t, Y, 0) can clearly be written as

p (helhg, y, ) o< p (yelhe) p (Relhi-1, hetr, 6) - (2.13)

In essence, the method of Jacquier et al. (1994) attempts to approximate the density
p (hi|hi—1, hi+1,0) by the density p(y¢|h:). However, Shephard & Pitt (1997) argued that in (2.13)
the prior density p (h¢|hi—1, hi+1,6) dominates the likelihood p (y;|h:) and therefore one should focus in
approximating p (ht|h\t, Y, 0) by a density of the same form as p (h¢|hi—1, ht11,0). In order to describe
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the method suggested by the authors, we use the following form of the SV model:

h
Y+ = exp (%) &t, (2.14a)
ht = Mh+¢(ht*1 _:uh) +77t7 t= 17"'7T7 (214b)

where ¢; and 7, are as in (2.10). The log-volatilities in (2.14b) have been centered around their un-
conditional mean and clearly h¢lhs—1,0 ~ N (), + ¢ (hi—1 — pp,) , 05), while y|hy ~ N (0,exp (ht)).

Moreover, it is easy to see that

o (alhess hess, ) o exp {_ [(hess — ) = & (e — uhnz;[(ht — ) = & by — ) } |
n

By combining the terms in the exponential term and completing the square it is easy to see after some
algebra that hylhy_1, hiy1,0 ~ N (my,03), where

hit1 — hi—y — 2
my = fip + O [(hess 'uh)+2( =1 = fn)] and o2 = n 5 (2.15)
1+¢ 1+¢
Thus, combining the latter result with (2.13), we have:
logp (he|hvs,y,0) = const +logp (he|hi—1, hey1,0) +logp (ye|he)

he —my)®  hy Y

= const — % - Et — ‘%t exp (—ht) (2.16)
he —me)®  hy R hy — my)?

~ const — % — Et - %GXP(—mt) [1— (he —mﬁ%—%

= logg (h),

where the third line comes from a second order Taylor expansion of exp (—h;) about m,. In addition,
the terms in log g can be combined and after some algebra, it is easily seen that g (hy) o< fx (ht| s U?),

where fn (x]oz, 52) denotes the Gaussian density with mean « and variance 52, and

O't2 0't2 2 2 1 yt2 -
= ;mt + > [yt exp (—my) (1 4+ my) — 1] and o} = 52 + D) exp (—my)

A point to be stressed is that, as Shephard & Pitt (1997) explain, since log g contains a quadratic term,
this implies that log g is an approximation that does not bound logp (ht\h,\t, y,H). Therefore, simple
rejection sampling cannot be applied. Nonetheless, we can consider the Gaussian density with mean
p, and variance o7 as a pseudo-dominating density of p (ht|h\t, Y, 0) and then use the rejection M-H
algorithm as in Jacquier et al. (1994).

Both algorithms of Jacquier et al. (1994) and Shephard & Pitt (1997) are important in the sense
that their procedures are general and can be extended to handle fat-tailed observation errors and the
asymmetric stochastic volatility model. The idea of using a M-H algorithm within the Gibbs sampler

can also be extended to multivariate stochastic volatility models. However, the simplest procedure for
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updating the log-volatilities in a single-move Gibbs sampler was proposed by Kim et al. (1998). Their
algorithm, though not very general, is simpler and less computationally consuming because it does not
involve a M-H accept-reject step. Kim et al. (1998) found a density g that bounds p (ht|h\t, Y, 0) SO

that rejection sampling can be used to update the log-volatilities.

Rejection Sampling Kim et al. (1998) used the same parameterization of the SV model as Shephard
& Pitt (1997). Their reasoning is exactly the same, but they do not use a Taylor expansion of exp (—hy).
Instead, Kim et al. (1998) recognised that the function exp (—h;) is convex and hence, it can be bounded
below by its tangent at any point. Thus, if we use the latter result in (2.16), we obtain

)2 2
log p (htlh\y, y,60) < const — (=)™ he %t exp (—my) (1 +my — hy)

202 2
= logg(ht).

2

If the terms in log g are combined, it can be shown that g (h;) o< fn (ht]ut, O'z), where 0% is as in

(2.15) and
2

U*
pe =+ 20 [y exp (—my) — 1]

Most importantly, the density fn (-|ut, 03) does indeed bound p (-|h\t, Y, 0) and so simple rejection sam-
pling can be used. Thus, to update the log-volatilities, for each time t, proposals x; are generated from a
N (,ut, 03) density until one of these is accepted with probability min {1, P (a:t | hilt) Y, 9) /fn (JSt 7 03) },
we then set hgiﬂ) = x; and proceed to update hg?l.

The algorithm proposed by Kim et al. (1998) is efficient, because it does not use a M-H accept-
reject step, as the previous methods did, and hence it does not allow for repeats in the sequence of
log-volatilities. Thus, a more informative chain is produced, which converges more rapidly. In addition,

Kim et al. (1998) state that draws from the N (i, 03) are accepted at an average rate of over 99%.

Sampling the hyperparameters We now focus attention on the updating of the parameters, puy,,
o, 0,27. Jacquier et al. (1994) used a standard Bayesian approach for linear models, i.e. they proposed
using a conjugate normal-inverse gamma prior for the parameters. However, most authors argue that
it is better to restrict ¢ to the stationarity region beforehand, by choosing a prior distribution for ¢
that has support on the interval (—1,1). An uninformative prior for ¢ can cause problems, in practice,
when the data are close to being non-stationary. If ¢ = 1, the parameters p;, cancel in (2.14b) and as
a result, p;, cannot be identified from the data.

In what follows, we pursue the approach by Kim et al. (1998), who restrict |¢|] < 1.
Shephard (1996) and Shephard & Pitt (1997) employ a similar approach on this subject. The pa-

rameterization we consider is that in (2.14). Step (2) of algorithm 2.1 is split into three parts:
2a Sample 0727 =+ P <0'727|h(i+1), uﬁf), gz5(@'))_
2b Sample ¢+ ~ p (¢| R+ 0, Ug(m))

2¢ Sample ,ug“) ~p (uh|h(i+1), $0HD). 0127(1'+1))‘
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In order to specify the prior and posterior densities of each of the parameters we note the following
result. Using one-step-ahead prediction densities for the log-volatilities, the likelihood function of the

log-volatilities can evidently be expressed as

T—-1
p(hl6) = p(hi|0) [] p(hesa|he, 6) 2.17)
t=1
1 T 1 (h1 — /Lh)2 (1 - ¢2) + iz:ll [(hty1 — dhe) — (1 — @) /J,h]Q
= (gm) (- et =

Sampling 0,27. For 0727 it is natural to choose a conjugate prior such as the inverse-gamma, so that
o2 ~ IG (s /2,B,/2). Combining this prior with the likelihood of the log-volatilities (2.17), it can be
shown that the posterior density p (0727|h, [y, @) is an IG (v4, Ag), with
2 2 T—1 2
g+ T Bo + (= )™ (1= &%) + 34y [(hesa — She) — (1 — &) py]

Vg = 5 and M\, = >

As already noted, estimates of 0% for financial time series are usually found in practice to be very small.
For this reason, a popular choice in the stochastic volatility literature is to set o, = 5 and 3, = 0.05,

so that the mean of this prior is equal to 0.0167 approximately.

Sampling ¢. To restrict ¢ in the stationary region, a transformed Beta prior is used, by setting
(¢p+1)/2 ~ Beta (a¢,ﬁ¢) so that the prior has support on (—1,1) and the prior density is

o= (42 (59

If this prior is multiplied by the likelihood of the log-volatilities the full conditional density for ¢ becomes

N2 2
p (6l o?) x p(0)(1- )" exp {— o — ) (1) } (2150)
n

One way to sample from this density is to recognise that it is log-concave in ¢ and hence, use the
adaptive rejection sampling procedure by Gilks & Wild (1992). An alternative and simpler approach is
to use the independence M-H algorithm. Expanding the exponent of the term in (2.18b), it is easy to
see that

T-1 . . N2
o {_ZH (ess = 1) = 6 (b = ) }O( e (Bl o?)
n

where fn <| s 035) is the density of a Normal random variable with
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_ ZtT;f (Pig1 — pp) (he — ) 2 _ ‘7127
= T—1 2 and 0§ = —F3 2"
=1 (he — pp,) t=1 (ht — pp,)

In conclusion, the posterior density of ¢ is:

Hg

B — )2 (1 — o2
P (61h, 1, 02) < p(9) (1= 6%) exp {—( 1 uh2)02( ° )}fN (Sl1s,3) -
n

Therefore, within a M-H setting, we choose an initial value ‘(b(o)‘ < 1. We sample draws ¢, ~ N (u¢, O‘é)
and then provided |¢,| < 1, the proposed ¢, enters a M-H accept-reject step, where the acceptance
probability is given by
1/2
(¢(Z) ¢ ) p (QZS*) (1 - @Zﬁ) / exp {_ (hl - :uh)2 (1 - ¢£) /20727}
0% y P ) = ) ) : .
p(@D)(1 = (D)) exp { = (b = ) (1 = (69)2) /203 ]

Popular choices for the parameters ay and 3, of the prior density are ay = 20 and B4 = 3/2 so
that the prior mean for ¢ is approximately equal to 0.8605. Hence, values of ¢ close to one are favoured

more in order to model the persistence in the volatility of asset prices.

Sampling p;,. Since u;, € R, we can specify a proper but relatively diffuse prior distribution for
iy, such as a N (O,JZ), with O‘i a large number, e.g. 10. It is easily seen that the posterior density

satisfies

2 2 T-1 2 2

> (= )" (1= ¢%) + 50y (e — dhe) = (L= @) * i
p (Hh|h7 ¢a Un) X exp {_ 20_727 - ﬁ . (219)
Expanding the terms in the exponent in (2.19), after some algebra, it is seen that the posterior is a

N (mh, 3,21) , Where

T-1 2 2 -
my, = (I+@)hi+ D21 (hiy1 — ¢:;) and S% _ (1 —¢ ) + (ZQ_ D(1-9¢) + 0%] )
(L4+6) + (T —1)(1—¢) + Iy ! '

(1 - ¢) O-,u

Discussion Let us summarize some of the basic features of the single-move MCMC approach. Firstly,
as we have seen, it is fairly straightforward to sample the parameters 8 from their full conditional
densities. Once the Gibbs sampler has converged, we can use the draws from this posterior distribution
to obtain density estimates and the posterior mean of the parameters. As Broto & Ruiz (2004) point
out, an important advantage of the MCMC procedure is that, since the estimation is based on finite
sample distributions, there is no need to use asymptotic theory. Moreover, the sampling experiments of
Jacquier et al. (1994) compared the method of moments and QML estimation procedures to the MCMC
approach and showed that the latter outperforms the other two approaches.

To gain some impression of the precision of the single-move MCMC method, we shall use the same

sampling experiment as for the QML method. Using the same sample of size 1,000 generated from the
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Figure 4: Trace plot for MCMC estimate of ¢ and histogram of the obtained posterior sample.

SV model with v =0, i.e. u, =0, ¢ =0.9 and 0727 = 0.1, we use the rejection sampling method of Kim
et al. (1998) to sample the log-volatilities while the sampling of the hyperparameters proceeds as above
with the prior distribution for u being N (0, 10).

Posterior summaries of the three parameters ¢, 0727 and p;, are presented through trace and his-
togram plots in Figures 4, 5 and 6 respectively. The histogram plots represent the posterior marginal
distributions, while the trace plots indicate whether or not convergence can be safely diagnosed and
also how well the output samples behave. All three trace plots in Figures 4, 5 and 6 indicate that the
single-move MCMC algorithm has indeed converged. It can be readily seen that the posterior samples
for the parameter ¢ do not exhibit any significant bias when compared to the corresponding estimate
obtained from the QML method. In fact, the mean of the sample obtained from the Bayesian approach
is equal to 0.9026. The output samples for the parameter U% behave well and with the sample mean
being equal to 0.0940 there is no evidence of considerable bias.

On the other hand, the output samples for the parameter y;, do exhibit a slight positive bias with
the sample mean being equal to 0.1241. The Bayes’ estimate for -y is obtained after transformation and
turns out to be equal to 0.0121. The small bias found is in accordance with the results of Broto & Ruiz
(2004), whose extensive sampling experiments indicated that the best estimate for the parameters g,
and v are based on using the corresponding sample moment of the observations.

Finally, it should be noted that for this type of estimation method we hope that there is little

autocorrelation within the output series so that the samples obtained can be as close as possible to
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being serially independent. This can be assessed using correlograms of the samples of ¢, (7,27 and p,
which are displayed in Figure 7. It can be seen that both the samples of ¢ and U%, even after thinning,
do exhibit some autocorrelation, which dies out exponentially fast however. On the other hand, the
autocorrelation for the output series of py is insignificant at all lags and thus, the posterior sample

obtained for y; can be deemed to be serially independent.
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Figure 7: Correlograms for the samples of ¢, (7,27 and p;, obtained via the single-move MCMC approach
of estimation.

An important advantage of the MCMC approach is that it produces samples of the log-volatilities
conditional on the observations y. The draws can then be used to approximate E (h:y) by means of
a Monte Carlo estimate and hence, obtain a natural solution to the smoothing problem. Moreover, as
Jacquier et al. (1994) demonstrate, with a minor modification of the algorithm, it is also possible to
obtain multi-step-ahead forecasts of future log-volatilities. The procedure can also be adapted to handle
fat-tailed distributions and correlated errors, as in Jacquier et al. (2004), as well as multivariate SV
models.

Shephard & Kim (1994) note an issue that might arise when using the single-move MCMC algorithms
outlined above. If the persistence in the volatility is high, i.e. ¢ ~ 1, and 0727 is small, the log-volatility
process is highly correlated. As a result, the draws hgi) sampled from the full conditional densities
exhibit high levels of correlation for long lags and consequently, there is little movement in the chain.
Thus, the single-move MCMC procedure converges slowly in this case and incurs a large computational
overhead. In order to overcome this problem, another approach has been proposed, which attempts
to sample the whole vector of the log-volatilities with a single draw from the density p (h|y,0). This

approach is usually referred to as multimove MCMC sampler and is described in the next section.
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2.3.2 Multimove MCMC Samplers

One of the multimove MCMC samplers that has had a great impact on other approaches was suggested
by Kim et al. (1998). Their procedure is based on the linear state-space representation (1.4) of the SV

model. In particular, the authors suggest to write the SV model as

wy = logy? = hy + 2, (2.20a)
he = gyt é(heos— )+, t=1...,T. (2.20b)
However, instead of approximating the log x? distribution of z; = loge? with a N (—1.27047 72/ 2), which

is suboptimal and results in poor sample properties, a suggestion by Shephard (1994) is followed. Kim

et al. (1998) approximated the log x? distribution by a mixture of seven normals, so that

7
fzt (Zt) =~ Zijzt|st:j (ztyst = ]) 5

Jj=1

where z|s; =j ~ N (mj —1.2704, v?), s¢ is the indicator variable at time ¢, and the ¢;, 7 = 1,...,7 are
the weights attached to each component, so that p(s; = j) = ¢; and Z;Zl ¢; = 1. Most importantly,

given the indicator variable at each time ¢, the state-space model in (2.20) is Gaussian, that is
we|sy = j,hy ~ N (he +mj — 1.2704,0%)

and thus, the model (2.20) can be thought of as a time-inhomogeneous, Gaussian state-space model.
This allows the algorithm of Carter & Kohn (1994), or deJong & Shephard (1995) (see also Appendix
A) to be used in order to sample all of hy, ..., hp at once from p (h|w, s), where w = (log v, ..., log y%)
and s = (s1,...,57).

In essence, this approach augments further the vector of parameters and log-volatilities, (6, h), with
the vector s of indicator variables and constructs a Gibbs sampler which will produce samples from the

density p (0, h, s|w). The general form of this Gibbs sampler is as follows.

Algorithm 2.2 (Multimove Gibbs Sampler) Choose arbitrary starting values 0(0), R and let i =
0.

1. Sample st ~ p (s|w, h(i+1))'
2. Sample RUHD ~ p (h|w, s(i),g(i))'

3. Sample 80D ~ p (0[h(”1)).
4. Seti=1i+1 and goto 1.

Step (2) of the algorithm is best conducted via the simulation smoother of deJong & Shephard

(1995), as shown in Appendix A. To sample the vector s from its full conditional density, we sample
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each s; independently. In particular, we have

T T
p(slw,h) = Hp(st!wmht)OCHP(wt\Suht)p(St) and
t=1

t=1
p(se =jlwe, he) o qj fn (welhe +my — 1.2704,05), j=1,...,7.

This a 7-point mass function whose normalizing constant is straightforwardly computed and hence, we
can easily produce draws for each s;. Finally, to update the parameters 8, exactly the same approach
as with the single-move Gibbs sampler can be used.

As Kim et al. (1998) illustrate, the above procedure greatly reduces the correlation between succes-
sive draws. The method has also been extended by Chib et al. (2002) to handle fat-tailed observation
errors, while Omori et al. (2004) generalise to accommodate the leverage effect. However, as is the case
with any procedure using the linearized SV model, this method suffers too from the ‘inlier’ problem. To
overcome this problem, Kim et al. (1998) suggest working instead with the transformed observations
w; = log (y? + c), where ¢ = 1075, Furthermore, as Shephard (1996) explains, although the method
improves the correlation of the draws and allows for inference, one could argue that this is only an
approximation. To correct for the approximation error Kim et al. (1998) propose a procedure that

reweighs the draws produced by their sampler in a similar spirit to importance sampling.

2.4 Simulated EM (SIEM) algorithm

The SIEM algorithm for the estimation of SV models is a non-Bayesian approach. It is of special
importance because it can be thought of as a refined version of the QML method and in addition, it
provides a link between the latter procedure and the MCMC methods discussed above. A first version
of the SIEM algorithm for the estimation of the SV model was proposed by Shephard (1993). The
approach was later improved through the work of Shephard (1994), Kim et al. (1998) and Mahieu &
Schotman (1998). For general details on the EM and SIEM algorithms see Robert & Casella (1999).
The simulated EM algorithm uses the linear state-space form of the SV model (2.20) and a mixture
of normals to approximate the density of z = loge? as in section 2.3.2. The ‘missing’ data are assumed
to be the indicator variables s = (s1, ..., s7), while the ‘observed’ data are the transformed observations

w = (log v3,...,log y%) If we let f (w; @) denote the likelihood of the observations, then we may write

p(w,s;0)
e - 28 Y pwlse)nts)
’ p (s, w; ) p(s|w;6)
f(w; )
log f (w;6) = logp(w|s;0)+logp(s) —logp(s|w;0). (2.21)

If we know apply the ‘E-step’ of the standard EM algorithm and take expectations on both sides of
(2.21) with respect to the density p (s|w; @) conditional on the observed data and a preliminary estimate
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0 of 6, we can see that maximizing f (w; @) with respect to € is equivalent to maximizing the function

Zlogp(w|s;0)p <s|w;0(0)) . (2.22)

The maximization step of the EM algorithm then produces an improved estimate 0(1), according to

1) — : .9©)
0 argmgx?logp(w[sﬁ)p <s|'w,0 ) . (2.23)

In general for ¢ = 1,2,..., once 0" has been found, we iterate through the expectation and the
maximization step again with et replaced by H(i), to obtain a better estimate 87+tY). Under some
mild regularity conditions the sequence {H(i)} converges to a stationary point 0 of f(w;0).

However, the problem with the EM procedure in the case of the SV model is that the density
p (s|w; 0) is unknown. This is circumverted by cycling through steps 1 and 2 of the multimove Gibbs
algorithm 2.2 and obtaining M draws s, ..., s from p (s|w; @). Thus, the function to be maximized
in (2.23) is replaced by its Monte Carlo estimate (1/M) ij\il log p <w|s(j);0). Most importantly,
given a draw s of the indicator variables vector, the state-space w|s(j) is Gaussian and hence the
log-likelihood log p <w|s(j ); 0) can be evaluated from the Kalman filter as shown in Appendix A.

In conclusion, given the M draws of the indicator variables vector the function to be maximized is
the sum of M Gaussian log-likelihoods. Clearly, as M — oo, the Monte Carlo estimate converges to
(2.22) and hence the above procedure converges to the standard EM algorithm. Shephard (1996) reports
that for the SV model in particular, there is little improvement in the procedure if M is increased above
the value of 10 and this is because the ‘missing’ data s contain little information about the parameter
vector 6.

In a simulation study Shephard (1993) demonstrates that the SIEM algorithm outperforms the

2
n

Furthermore, Mahieu & Schotman (1998) propose a different mixture representation to accommodate

QML method especially when the sample size is small and/or the value of the variance o7 is small.
for a wide range of shapes of the distribution of £; and suggest using as an initial estimate of the
parameters the estimates produced by the QML method. Both studies report that the SIEM algorithm
finds the neighbourhood of the maximum quite quickly. On the other hand, once the neighbourhood
of the maximum is reached, the EM algorithm tends to move slowly on the neighbourhood itself. For
this reason, Shephard (1993) suggests switching to some other optimization algorithm when the STEM
slows down. Finally, it should also be noted that, although the use of mixtures makes the procedure

more robust than QML to the inlier problem, the problem is not fully resolved.

3 Multivariate Stochastic Volatility Models

In this section we shall be concerned with multivariate models of stochastic volatility, which simultane-
ously model the movements in the volatility of a number of assets. The extension of the univariate model
to the multivariate case is important because of the covariation effect. As Aydemir (1998) explains, we

often observe related movements between markets, or sectors, or stocks in a sector, or exchange rates.
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This phenomenon, is usually due to a set of assets being formally linked together or due to them being
influenced by common unobserved factors.

In particular, currency exchange rates offer a good example of financial time series that are linked
together. Diebold & Nerlove (1989) study the behavior of seven dollar exchange rates for a period of 12
years. Their results provide substantial evidence that the seven rates show similarities in the volatility
movements in response to a number of actions taken by the U.S. government through the years. For
example, in 1978 intervention efforts by the U.S. government to strengthen the dollar cause an increase
in the volatility of all seven exchange rates.

On the other hand, another reason that we might observe commonality in the volatility behavior
is the flow of ‘news’ in the market. New information, such as trading volume, quote arrivals, dividend
announcements or a change in a government’s policy, are likely to affect the volatility of all the assets
in the market or at least, a sector of the market. It is usually observed that the flow of new information
produces the same qualitative change, though often of different magnitude, in the volatility of the assets.
Ghysels et al. (1996) mention also that the globalization of equity markets has caused an increase in
the correlation of stock returns.

The aforementioned phenomena suggest that a multivariate volatility analysis can be considered
as being more comprehensive than univariate, since it takes account of more information; the cross-
correlations in the changes of the asset returns. As multivariate models allow for possible interactions
between the volatilities of different financial time series, they can lead to a better fit in data and improve
forecast estimates. However, multivariate analysis is also important for most practical applications.

Pitt & Shephard (1999) link multivariate analysis with the theory of financial economics. Arbitrage
pricing theory suggests that there is a relationship between the expected return of a stock and the
covariance of the returns. The Capital Asset Pricing Model, portfolio optimization and Value-at-Risk
(VaR) theory, which studies the extreme downside of a portfolio of assets, all require knowledge of the
joint distribution of the asset returns. Hence, there are clearly also practical reasons inducing interest
in multivariate analysis.

Multivariate ARCH models started to develop almost at the same period as the univariate ARCH,
with the most popular ones being the diagonal vech model by Bollerslev et al. (1988), the constant
conditional correlation model by Bollerslev (1990), the factor-ARCH model introduced by Engle et al.
(1990), the BEKK model proposed by Engle & Kroner (1995) and the latent factor ARCH model due to
Diebold & Nerlove (1989). Most of these models are known to suffer from the curse of dimensionality,
while the constraints on the parameters needed to ensure symmetry and positivity are complicated and
hard to interpret. The dynamic conditional correlation GARCH model introduced more recently by
Engle (2002), the flexible multivariate GARCH model due to Ledoit et al. (2003) and the orthogonal
GARCH advocated by Alexander (2001) show more promise, although the latter has been criticized by
Engle & Sheppard (2001) for poor fit to the data.

On the other hand, far fewer multivariate models have been proposed in the stochastic volatility
literature. The main reason for this is that stochastic volatility models are expressed in terms of normal
log-volatilities, which in turn are hard to extend to a multivariate counterpart. The most well known
multivariate SV model, due to Harvey et al. (1994) attempts to overcome this difficulty by defining

vectors of log-volatilities which interact through a constant correlation structure. Another approach is
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to use factor structures, as in Pitt & Shephard (1999) and Aguilar & West (2000), which are more flexible
and allow for a large number of assets to be modelled simultaneously. More recently, the multivariate
random walk model due to Uhlig (1997) has received significant attention, and many researchers look
at modeling the covariance matrix of asset returns using the Wishart distribution. In what follows we

describe a number of multivariate stochastic volatility models and their properties.

3.1 Constant Conditional Correlation Model

The first multivariate SV model, which is also the simplest one, was proposed by Harvey et al. (1994).
The most important feature of this model, as will become evident, is that it does not allow the covariances
between different time series to evolve independently of the variances and thus, it can be considered as
the stochastic volatility analogue to the constant conditional correlation model of Bollerslev (1990). In
what follows, we denote y, = (y1s,...,yn¢) the (N x 1) vector of one-period returns from N assets at

time t. It is assumed that for all t = 1,...,7T and for each ¢ = 1,..., N the following relation holds

it = exp{ha/2}ei,
hit = v+ ¢ihit—1 + Ny,

where the observation errors €; = (g14,...,en¢)" and 1, = (ny,...,My;) are serially and mutually

independent, both normal distributed with zero means, Var (n;) = X, and

1 P12 " PIN
p 1 p

Varfed=s.=| "2 7N (3.1)
PIN PN 1

with | pz-j| < 1, so that 3. is a correlation matrix. More concisely the above model can be written as:
yilhe ~ N (0, Htl/QﬂgHtln)7 where H; =diag(exp (h1t),...,exp (hnt)), 2e is given by (3.1) and with
the vector of log-volatilities by = (his, ..., hn¢) following a vector-AR(1) (VAR(1)) process so that

hi =~ + ®h;, 4 +n,, (3.2)

where ¥ = (71,...,7n)s ® =diag(¢y,...,éy) and n, ~ N (0,3,). In Harvey et al. (1994), the matrix
® is taken to be the identity matrix, and ~ is equal to the N-dimensional zero vector, so that the
log-volatilities follow a random walk and hence, the fact that volatility movements are persistent is
stressed.

This last representation of the model makes also more evident the connection with the model by
Bollerslev (1990) and the fact that the covariances between the assets are not allowed to evolve inde-

pendently of the variances. Clearly, for i # j,

h; h;
Cov {yit, yjs|he} = E{yilhe} = pijexp {f} exp {%}
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and so, since Var {yit|h:} = exp{hi}, i = 1,..., N, it is obvious that the model has constant correla-
tions. Bollerslev (1990) and Harvey et al. (1994) state that the assumption of constant correlations is
empirically reasonable. However, Diebold & Nerlove (1989) argue that the correlations may not be con-
stant and may behave like the variances, exhibiting, for example, temporal persistence. Shephard (1996)
concludes that the model above is of limited interest because it cannot capture all of the theoretical
features of the data.

Another important feature of this model is that it can be written in a linear, non-Gaussian state
space form by taking the logarithms of the squared observations. Thus, it allows for estimation via

the QML procedure, as originally suggested by Harvey et al. (1994). Clearly, if we denote w; =

(log Y, ..., log yJZVt)’ and by 1 the N-dimensional vector of ones, it is straightforward to see that
we = —1.2704 x 1 —+ h't + £t7 (33)
where &, = (log €2,,...,log 6?\”)’ +1.2704 x 1 is a zero-mean, serially independent vector process whose

covariance matrix is denoted 3¢. Clearly, as &; is non-Gaussian, equation (3.3) combined with (3.2)
gives a linear but non-Gaussian state space model. Moreover, since ® is a diagonal matrix, it is clear
that the elements of the state vector, h;, and the observation vector, w;, are linked together only
through the off-diagonal elements of the covariance matrices 3, and X¢. Therefore, as Harvey et al.
(1994) explain, the linearized model resembles a Seemingly Unrelated Time Series (SUTSE) model (see
Harvey (1989)), where the N time series, wyy, . .., wn¢, are modelled together not because they interact
with each other, but because they are all subject to the same economic environment and thus, are
contemporaneously correlated.

Furthermore, it can be shown (see Harvey et al. (1994)) that the covariance matrix, X¢, of &; can
be expressed in a functional form in terms of X.. In particular, let ¢;; denote the ij-th element of 3.
Clearly, since for i = 1,..., N, &; = loge? + 1.2704, the diagonal elements are all equal to Var {£;},

so that c;; = 72/2, while the off-diagonal elements are given by

o0

n—1)! L.
Cij :;7(1(1—/2))71&2?’ i # ] (3.4)

where (o), = a(a+1)--- (a+n —1). However, it should be noted that in this case the transformation
of the model incurs loss of information. In particular, since in (3.4) the correlation coefficients p;;
have been squared, all the relevant information on their sign has been lost. Thus, if the transformed
observations (3.3) are used to estimate the model, then we can recover the information on the magnitude
of the original correlations p,;, using (3.4), but not their sign. To overcome, this problem Harvey et al.
(1994) suggest using the signs of the untransformed observations to obtain the sign of the correlation
coefficients.

Finally, another feature of the model by Harvey et al. (1994) is that it can incorporate common
factors and hence allow common trends and cycles in the volatility. In a common factor model (Harvey
(1989)) each of the N elements of a multivariate time series are related to K < N common factors via a
linear function. It can be considered as a generalization of a SUTSE model where the N elements have

certain common components. For the case where the log-volatilities follow a random walk as in Harvey
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et al. (1994), the model can incorporate common factors, as follows

w;, = —12704x 1+ Bh}+h+¢, (3.5a)

In (3.5) w; and €, are defined as before, B is an (N x K) matrix of factor loadings, h is an N-dimensional
vector, while (3.5b) is a K-dimensional random walk model with n; ~ N (0, E;‘]) It should be noted
that unless restrictions are placed on the elements 3;; of B and on the vector h, the model in (3.5) is
not identifiable. The usual restrictions are to set 3;; = 0 for j > ¢ and X} equal to the identity matrix,
while the first K elements of the vector h are restricted to be zero and the rest are unconstrained. An
appealing feature implied by these restrictions is that the common factors hf are uncorrelated with
each other and this simplifies estimation and the theoretical properties of the model. On the other
hand, the restrictions placed on the matrix B are displeasing, in the sense that they imply that the
first observation wi; depends only on the first factor, ws; depends only on the first two factors and
only the last K observations, wy, ..., wy+ are related to all of the common factors. Clearly depending
on the ordering that we choose for the N series in order to model them, we will get different relations
between the IV observations and the K factors. The unappealing feature about these constraints is
that we may often be led to a senseless interpretation of the factors. In the latter case Harvey et al.
(1994) suggest, once estimation of the model has been completed, using an orthogonal matrix R to give
a factor rotation and a more useful interpretation to the factors.

Finally, it should be noted that the idea of common factors can also be extended to stationary
models of the log-volatilities. For a stationary model, we allow h; in (3.5b) to follow a stationary
VAR(1) process and this also removes the need to include h in the observation equation (3.5a). The
non-stationary model with two common factors was estimated using the QML method by Harvey et al.
(1994). Another strategy proposed by Jacquier et al. (1995) is to use a Bayesian approach with MCMC
methods.

3.2 Factor SV models

Factor models have been introduced in the ARCH literature by Engle et al. (1990) and their basic
advantage is that they reduce the dimensionality of the parameter space. Another factor model, which
is in similar spirit, but with unobserved latent ARCH factors was proposed by Diebold & Nerlove (1989).
The multivariate factor SV models are closer to this latter suggestion, in the sense that the returns vy,
from N series are linear functions of K unobserved latent factors, where each one is driven by a SV
model. The difference with the common factor model of Harvey et al. (1994) is that in this case the
common factors are incorporated for the untransformed observations. The first and simplest factor
model in the SV literature was proposed by Jacquier et al. (1999). Denoting by f, = (fis, ..., fx¢) the

vector of K common factors, at time ¢, Jacquier et al. (1999) set

Yy, = Bf, +wy, (3.6)
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fir = exp(hit/2) e, (3.7a)

In this factor model, the matrix B is a constant (N x K) matrix of factor loadings with K < N,
the errors w; ~ N (0,€) and are serially and mutually independent of all the other terms in (3.7a)
and (3.7b). The errors ¢z and n;, ¢ = 1,..., K, are serially and mutually independent N (0,1) and

ne
stationary.

N (0, o? ), respectively. We also have |¢;| < 1, so that the factor log-volatility processes in (3.7b) are

Clearly, since f, and w; are independent, zero mean processes, we have F (y,) = 0 and Var {y,|h:} =
BH B’ +Q, where H; =diag(exp (hi¢),...,exp (hx¢)). Jacquier et al. (1999) proposed to use MCMC
methods to estimate the model, as the QML method is not effective in this case. However, the method
has not been implemented and another more complicated multivariate factor SV model is usually pre-
ferred.

The second factor SV model was independently proposed by Aguilar & West (2000) and Pitt &
Shephard (1999) and allows the errors w; = (wiy,...,wn¢) in (3.6) to be driven by independent SV

processes also. That is,

exp (ot /2) ejt, (3.8a)
Qe = mj—l—(5j (ajt—l —mj)—i—ujt, j=1...,N. (3.8b)

wjt

As before, the ej; are i.i.d N (0,1) random variables with no serial dependence and the wj; are i.i.d
N (0, 03 j) serially and mutually independent of the e;;. As usual we place the constraint |0;| < 1 to
ensure the stationarity of the log-volatility processes.

The intuition behind this extension of the model is that the K factors can account for the off-diagonal
elements of the covariance matrix of the returns but cannot account for all the marginal persistence in
the volatility. Loosely speaking the volatility resulting from the fact that the N series are subject to the
same economic environment is explained by the volatility of the common factors f,, while each of the
idiosyncratic errors, or series-specific shocks w; account for the volatility associated with a particular
series only. As Pitt & Shephard (1999) explain, the inclusion of SV effects in the errors w; makes the
model more robust, in the sense that if an unusual return is observed for a specific series, then this can
be attributed to the idiosyncratic error associated with that particular series.

Before we proceed with describing the properties of this model, we should firstly discuss some
identifiability issues. As with the common factors model of Harvey et al. (1994), the parameters of the
model are not identifiable unless constraints are placed on the elements 3;; of the matrix B. There are
two ways that this can be done. The solution suggested by Aguilar & West (2000) is to set 3;; = 1 for
i=1,...,K and B;; = 0 for j > i. These are the same restrictions placed by Harvey et al. (1994).
The approach suggested by Shephard & Pitt (1997) is somewhat different. They also set §5,; = 1 for
i=1,...,K, while /Bi(i—l—l) =0fori=1,...,K — 1. In this case the first series of returns depends in

all but the second common factor, the second series is influenced by all the factors apart from the third
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and so on, while only the last N — K + 1 series depend on all the factors. Both set of constraints are
somewhat arbitrary and once the model has been estimated, a factor rotation can be used to give a
more meaningful interpretation to the factors.

To discuss the properties of the factor SV model given by (3.7) and (3.8), we adopt the following
notation. We denote by h; the vector (hlt,...,hm)’ of log-volatilities of the factors, while a; =
(cut,...,ant)'. Clearly, since the errors g (i = 1,...,K)and ej (j = 1,..., N) are zero mean, we have
E(f,) = E(w¢) =0and E{f,|h} = E{w¢oy} = 0. Since the model for the returns is y, = Bf, +w;,
clearly both the unconditional and conditional mean of y, are equal to the zero vector. Moreover, since

each of the elements of f, and w; follow mutually independent SV processes, it is easy to see that

H
<ft>ht,at~NID<O,[ ¢ 0 )
Wi 0

Q,
where H; =diag(exp (h1¢), ..., exp (hxt)) and Q; =diag(exp (a1¢) ,...,exp (an¢)), while NID denotes

normally and serially independently distributed. Since f, is independent of w; and both are normally
distributed, it is implied that

yt|ht,wt ~ NID (O,BHtB, + Qt) . (39)

Moreover, expanding the matrix multiplications in (3.9) it is easily seen that

Var{yit|he,wi} = 5221 exp (hit) + -+ 522[( exp (hit) + exp (o) (3.10a)
Cov{yit,yjt|lht,wi} = BjBj1exp (hit) + -+ BixBix exp (hxt) - (3.10b)

Clearly, from (3.10) it is readily seen that the evolution of the covariances in the factor SV model does
depend on the variances in a complicated, but still deterministic way.
As regards the unconditional covariance matrix of y,, this is deduced using the properties of log-

normal distributions. From the properties of the AR processes, we know that h;; ~ NV (,ui, U%i (1 — qb? ))
(¢=1,...K), while ajy ~ N (mj,aij/ (1- 522)) (j=1,...,N). Clearly, E(fit) = E (wj;) = 0 while

2

ofc = Var(fi) = exp <,u- + _ Tni > o2 =Var (m + 701% >
P it) = i 2 o Ouw; = j 2\ |-
2 (1—¢7) ’ 2(1-6%)

Therefore, Var (y,) = BHB' + Q, where H :diag(agl, cee U%K) and :diag(ail, e ,UiN).

At this point, it should also be noted that more complicated dynamics could be introduced in
the latent SV processes. For example, Pitt & Shephard (1999) suggest allowing the errors e; in the
idiosyncratic shocks to be contemporaneously correlated, so that e; ~ NID (0,3.). In this case the
multivariate SV model for the idiosyncratic errors w; resembles the multivariate model by Harvey et al.
(1994). On the other hand, Aguilar & West (2000) consider a factor SV model where the errors in the

latent AR processes of the log-volatilities h; are contemporaneously correlated, so that
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he=p+ @ (b1 — p) + 1y

where p = (piy,. .., ug), ® =diag(¢q,...,¢x) and n, ~ NID (0, %,).

Other work on this model has been conducted by Han (2002), who exploits the fact that the number
of unknown parameters in the model increase linearly with IV and fits a multivariate factor SV model on
the returns of 36 stocks. Chib et al. (2005) look at extending the model in two ways: by incorporating
marginally ¢-distributed errors w; with stochastic volatility and allowing the series of returns to have
jumps. Thus, their model captures the observed fat-tailed nature of financial returns and can be
considered as a discretization of the Lévy process, which is widely used in continuous-time finance; see
Barndorff-Nielsen & Shephard (2001).

An open issue regarding this model is the number of common factors that are used. The estimation
of this model is performed using MCMC methods, but the number of factors is user controlled and
is not estimated from the data. On this matter, Aguilar & West (2000) suggest that, according to
their experience, if the number of factors K is too large, then the MCMC behaves poorly and does not
converge. On the other hand, if the factors are too few, this is identified by detecting co-movements in

the estimated variances of the idiosyncratic errors.

3.3 Multivariate SV models based on Wishart processes

One of the first genuinely multivariate SV models was proposed by Uhlig (1997). The model exploits the
conjugacy between the Wishart distribution and the matrix variate beta distribution; see Appendix B.
It allows the variance of the observations to evolve according to a matrix random walk. Its attractive
feature is that it leads to closed form prediction and update equations that can be considered as a
generalization of the standard Kalman filter recursions. The results derived by Uhlig (1997) have
become popular in the literature of matrix normal dynamic linear models; see West & Harrison (1997,
Chapter 16), but has not met great success in a finacial context. The reason for this is that the conjugacy
between the Wishart and the matrix variate beta distribution cannot be sustained if we try to move
away from the matrix random walk formulation and impose stationarity to the process generating
the volatility matrix. Allowing non-stationarity on the volatility matrix is sometimes regarded as an
unattractive assumption. However, stationarity constraints are often neglected in econometrics and the
model may be valuable in terms of explaining volatility, so is worth pursuing.

In what follows we shall briefly describe the model and we shall refer the interested reader to Uhlig
(1997) and West & Harrison (1997) for more details. Theorem B.10 in Appendix B, presents the
conjugacy between the Wishart and the beta distributions. In particular, if U ~ B, (v/2,m/2) with
vim>n—1land V=RR~ W, (v+m,X) for some positive definite symmetric (n x n) matrix ¥ and
for an upper-triangular matrix R with positive diagonal elements, then S = R'UR ~ W, (v,X). Note
also that the matrix beta distribution and its density in Definition B.5 are only defined for v,m > n—1
and is singular otherwise. Uhlig (1994) extended the definition of the matrix variate beta distribution
for positive integers m > 0 and showed that the conjugacy result still holds for v > n — 1 and integer-
valued m > 0. In particular, the density of a singular B, (v/2,1/2)-distributed random matrix can be
found in Uhlig (1994).
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As before, we denote by y, = (yit, .. .,ynt) the vector of one-period returns from N assets at time ¢
and by X; the (N x N) covariance matrix of y,. In addition T} denotes the Cholesky factor of 3, i.e.
the upper-triangular matrix with positive diagonal elements such that T} T; = ;. Then, Uhlig (1997)

set
y, = T;'e;, e ~NID(0,Iy) (3.11a)
v+1 v 1
Zt = Py T{—ththly Qt NBN <§a§> ) t= 15"‘7T' (311b)

It is assumed that the random variables Q, in (3.11b) are serially and mutually independent of all
other variables in the model as well as the initial condition 3¢ ~ Wy (y +1,(v+1)'8 0 1) for some
(N x N) matrix Sp > 0 (i.e. Sp is positive definite and symmetric).

Using the conjugacy between the Wishart and matrix beta distributions, the model suggests that,
at each time ¢, before observing y,, the prior for ¥; conditional on y,,...,y,_; is a Wn (1/, 1/_18;11)
distribution with E (Z¢|yy,...,yr) = S;%. Once y, becomes available, it can be shown that the
posterior for 3; is a Wishart Wy (l/ +1,(v4+1)71 S;l), where S; = (y,y} + vSi—1) / (v + 1) and with
expected value S; .

This filtering algorithm delivers the one-step-ahead prediction densities for y, and hence, the estima-
tion of the model by maximum likelihood is is principle straightforward. In fact, the original formulation
of the model by Uhlig (1997) allows y, to be given by a VAR process whose errors follow the stochastic
volatility model in (3.11). Then the estimation of the coefficient matrices in the VAR process requires
numerical procedures and Uhlig (1997) proposes an importance-sampling based approach for this.

Recently Philipov & Glickman (2004) introduced another multivariate SV model, which is in similar
spirit to the model by Uhlig (1997). It can be considered as a generalized version of the model by Uhlig
(1997), which contains the matrix-variate random walk as a special case. Using the same notation as
before, the model by Philipov & Glickman (2004) sets for t = 1,...,T

y, = Tley, e~ NID(0,Iy)

so that y,|%; ~ N (0,%;) and hence the density of the returns at time ¢ given the covariance structure

1S
1

1,
p(YZe) = ~ lexp{——yéﬁtlyt}- (3.12)
(27)2 det (%)2 2

The evolution of the covariance matrices X; is specified through one-step-ahead prediction densities
and more precisely through the density of the inverse of the current covariance structure 3; conditional
on X;_1. In particular, we have

28 ~ W (v, 8e-1)

where the degrees of freedom of the Wishart distribution satisfy v > N. To define the scale matrix S;_1
of the Wishart distribution, we introduce a positive definite symmetric (N x N) parameter matrix A,
with Cholesky factor R, i.e. A = R'R and a scalar parameter d. Then, for t = 0,...,7 — 1, Sy is
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defined as follows 1
S, =-R (! dR
t y ( t ) )

where we assume a known initial condition 3 > 0 for the covariance matrix. Thus, X, 1]215,1 ~
Wi (1/, %R’ (Et:ll)dR) and hence the conditional density of X, Lis (see Definition B.2 in Appendix
B)

_(¥=N-1)

1 B 1 det (%) 2 lr . (s, A= o1
P (35 1900) = et (o) o {50 [r @) 2 () =],

L4
2

where I'y (a) is the multivariate Gamma function (see Appendix B). The latter distribution defines
the evolution of the covariance matrices. Alternatively, using the relation between the Wishart and the
inverse Wishart distribution (see Theorem B.7), we can express the time-variation of the covariances in
terms of X;. Since E;”Et,l is Wy (v, S¢—1)-distributed, it follows that

S~ IWx (v+ N +1,8.Y) = Wy (y FN+ Ly (R) (2 (R’)_l) .

Moreover, using the properties of the Wishart and inverse Wishart distributions (see Theorems B.5 and

B.6), it is easy to see that

E(Z2) = vSia =R (Z74)'R and (3.13a)
1 -1 v -1 d -1
E(ZXi1) —— S =T (R (Z—1)" (R) . (3.13b)

Before we proceed any further, at this point, we should give an explanation to the role of the
parameters A and d. Clearly, both of them have their own role in the evolution of the covariance
matrices as they form part of the scale matrix of the Wishart distribution.

The restriction A > 0 ensures that the scale matrix S¢,t = 0,...,T—1, remains positive definite and
symmetric and hence the Wishart distribution governing the time-variation of the covariance matrices
is properly defined. Most importantly, as Philipov & Glickman (2004) explain, it is a measure of
intertemporal sensitivity. From the conditional moment in (3.13b), we can see that the elements of
A~! reveal how the current variances and covariances of the returns depend on the previous period’s
corresponding values. For example, high magnitude values of the diagonal elements of A~ and low
magnitude values in the off-diagonal elements imply that the current variances of the assets are primarily
affected by the previous period’s variance and less by the covariances/correlations with other assets and
vice versa. Thus, the off-diagonal elements of A define the degree by which each asset’s current volatility
is affected by the previous period’s correlations with other assets.

On the other hand, the scalar d defines the strength of the relationship between the current values
of the volatilities and covariances of the assets and the previous period’s. It can be thought of as the
persistence in the volatility and the multivariate analogue of the parameter ¢ in the univariate case.
In fact, as we shall see, d needs to be restricted in the region (—1,1) for the process generating the

conditional variances to be stationary. In fact, Philipov & Glickman (2004) suggest restricting d between
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zero and one so that an inverse relationship between the current covariance matrix and the previous
period’s one is ruled out.

To see the role played by the scalar d, it is best to use the conditional expectations in (3.13). As
in the univariate case, a value of d close to zero implies small persistence in the covariance structure.

Consider for example, the extreme case resulting by setting d = 0 in (3.13). Then,

14

v—N-1

(RR) '=————A"' and E(Z;'Z,) = A.

E(2t|2t71): I/—N—l

This implies that the conditional expectation of the current covariance structure does not depend on
the previous period’s one and it is constant. Thus, at each time period the covariance matrix of returns
in this case can be thought of as taking a value around some constant level irrespective of the value
of the previous period’s covariance matrix. On the other hand, consider the special case d = 1 and

A = I . Substituting this values in (3.13) gives

14

E@El%) =Ty

S and E(Z7Y3) =27,

Clearly, this results in the covariance matrix being governed by a matrix variate random walk and can
be considered as an analogue to the model by Uhlig (1997). In this latter case, there is high persistence
in the volatility and the effect of a shock in the returns at a particular period is present in subsequent
periods’ returns while it gradually dies out.

To see that d needs tp lien in the interval (—1, 1) for the process generating the conditional covariance
matrix to be stationary, we follow Philipov & Glickman (2004) and we use a linear decomposition of the
process. Let us first denote by L; the Cholesky decomposition for t = 0,...,7 — 1 of (Et_ 1)d, so that
(2; l)d = L}L;. Then, using the result on the transformation of the Wishart distribution (see Theorem

B.2), we obtain an autoregressive representation for the process generating the conditional variance.
—1 1 1T/ —1 1 rr/
X008 ~ Wa v, ;R L, L 1\R) &3 %= ;R L, Wy, In)L; 1R &
1
»;! = ~“R'L, VL, |R, (3.14)
v

where now V' denotes a random variable with V' ~ Wy (v,Ix). If we now take log-determinants on
both sides of the conditional distribution of 3;, we obtain a AR(1) process for the log of det (=7 1)

conditional on ¥;_;. In particular, we have

log [det (2;1)] = log [det (%R’L’thRLt_lﬂ =

log [det (2;)] = log [v~ " det (R'R)det (Lj_,L;—1) det (V)] =

log [det (£;1)] = —Nlogv + log[det (A)] + log [det (Et:ll)d} + log [det (V)] =

log [det (2;1)] = —Nlogv + log[det (A)] + dlog [det (;))] + log [det (V)]. (3.15)

Equation (3.15) is an AR(1) process for the log-determinant of the covariance matrix of returns.
Writing A; = log [det (Et_ 1)], this AR(1) process can also be written as
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At =7 + dAt—l + €, (316)

where v = —N log v + log [det (A)] and ¢ is a random variable that follows the distribution of the log-
determinant of a Wy (v,Iy) random variable. Moreover, from standard properties of autoregressive
processes, we know that the process for the log-determinant A; of the covariance matrix ¥; is (weakly)
stationary if |d| < 1. Thus, we may conclude that in order to have a stationary process generating the
covariance matrix we need to set |d| < 1.

Clearly, even when the restriction |d| < 1 is placed on the model by Philipov & Glickman (2004)
the process generating the covariance matrices is not strictly stationary as in the constant correlation
model or the factor models. On the other hand, the advantage of this model over the factor SV and the
constant correlation models is that it allows the covariance matrix to evolve stochastically over time.
Finally, as regards estimation of the model, since there is no obvious transformation of the model that
will result in a linear state-space form, Philipov & Glickman (2004) suggest using an MCMC approach

which is in similar spirit to the single-move samplers.

3.3.1 The Wishart Autoregressive process

Another model for multivariate SV can be constructed using the Wishart autoregressive process of order
one (WAR(1)), introduced by Gourieroux et al. (2004). The continuous time analogue of the model has
been applied for the pricing of fixed-income products and credit derivatives (see Gourieroux & Sufana
(2003) and Gourieroux & Sufana (2004)), while Gourieroux et al. (2004) concentrate on the case where
it is assumed that the covariance matrices are observed. The WAR(1) is also plausible as a driving
process for the unobserved volatility matrices of returns from N assets.

The idea underlying the WAR (1) processes relies on the fact (see Theorem B.1 in the Appendix) that
if a (p x n) matrix X is formed by setting its columns to be n > p random draws from a multivariate
N (0,%) distribution, where the (p x p) matrix ¥ > 0, then the random variable X X' is W), (n, X)-
distributed. To introduce intertemporal dependence between the covariance matrices formed in this way,
Gourieroux et al. (2004) proposed defining the columns of the matrix X to be observations from a latent
Gaussian VAR(1) process. To describe the multivariate SV model arising by allowing the covariance
matrices of N returns to follow a WAR(1), we shall start by describing the process generating the
covariance structure.

As before let 3; be the covariance structure of the returns-vector y, from NN assets. Consider
now, v > N — 1 identical, N-dimensional, Gaussian VAR(1) processes xi,...,Z,:, where each x;

(t=1,...,v) is generated for t = 1,...,T from
Tit = Pz + 1y, My~ NID(0,%,), (3.17)

where ® is a (N x N) matrix. It is well known (see Hamilton (1994) and Harvey (1989) for general
properties of VAR processes) that the VAR(1) process in (3.17) is stationary if and only if all the eigen-
values \; (i =1,...,N) of the matrix ® lie inside the unit circle. In what follows, we assume that this

condition holds and that consequently all of the ¥ VAR(1) processes 1, ..., &, are stationary. Since
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the processes are Gaussian weak stationarity implies strong stationarity. In particular, the uncondi-
tional distribution of all of the x;; (i =1,...,v) is multivariate normal with unconditional mean the

zero vector and unconditional variance Var (z;) = S, satisfying the equation
S =®S®'+%,. (3.18)

More precisely, by applying the vec (-) operator on both sides of equation (3.18), it is seen that vec (S) =
(In2 — ® ® ®)vec(3X,). We can also represent the v processes together as a matrix normal linear model
(see West & Harrison (1997)) by writing

X:=®X; 1+ Hy, (3.19)

where the (N x v) matrices X and H; are defined as X; = [@1¢,..., %] and Hy = [0y, ..., Myl
Clearly since the vector n;; (i =1,...,v) are ii.d N (0,%,) we have H; ~ Ny, (0,%,®1,); see
Definition B.1. Most importantly, using the unconditional distributions of the » VAR(1) processes,
we also have that X; ~ Ny, (0,S ® I)). Therefore, if we set £, = X; X} for all t = 1,...,T, then
3 > 0 almost surely and the marginal distribution of the covariance matrix is (see Theorem B.1)
Xy~ Wy (v,S), t=1,...,T with density:

(v—N-—-1
1 b 1
p(Z) = —% det (33) ; exp {——tr (S_IZt)} . (3.20)
22Ty (%) det(S)2 2

Moreover, using the properties of the Wishart distribution (see Theorem B.5), we have E (3;) = vS.
Let us now consider the distribution of ¥; conditional on 3;_;. We start by considering the
conditional distribution of the latent VAR(1) processes contained in X; conditional on X 1. Since
H; ~ Ny, (0,3, ®I,) using the dynamic linear model representation, it is straightforward to see that
X Xi—1~ Ny (®X;1,%,®1,). From Theorem B.8 in Appendix B, we have that the distribution
of ¥; conditional on X;_; is a non-central Wishart distribution (see Definition B.4) with v degrees of

freedom, scale matrix X, and non-centrality parameter © = 2;1'1>Xt,1X;_1<I” = 27;1@215,1{)’, ie.
S| X1~ W (1,5, 5,1 @X, 1 X[ @) =Wy (v, 3,5, 831 ¥). (3.21)

At this point we need to stress the fact that there are some important implications resulting from
(3.21). The conditional distribution of ¥; depends on X; 1 only through the product X; 1X ;_1 =
3+_1, which implies that the process is Markov. That is, the current covariance matrix 3; depends only
on the previous period’s covariance matrix ¥;_; and not on the latent VAR(1) processes contained in

X¢_1. In particular, the conditional density of 3J; is given by

p(ztyzt_l) = vN

@

o]
go]
—N
N =

—tr [Z;! (2t+¢>2t_1q>’)]} o1 (” 121¢2t_1¢>’2n12t>,

274
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where ¢F} is the hypergeometric function of matrix argument (see Appendix B for the definition) and
can be efficiently computed using the algorithm by Koev & Edelman (2004). Moreover, using the

properties of the non-central Wishart distribution (see Theorem B.9), we have
FE (2t|2t71) = I/En + <I>Et,1'1>’. (322)

The fact that the WAR(1) process is Markov is important because it means that we can ignore
the underlying VAR(1) processes and we can define the process generating the covariance structures
through the unconditional and conditional distributions of 3;, just as in the model by Philipov &
Glickman (2004). That is, we may specify

8~ Wy (v,3,,3,'®% @)  with
3 ~ Wnx(,S), where S=3,+®SP"

This allows us also to consider non-integer degrees of freedom, since both the Wishart and the non-central
Wishart distributions can be defined for any v > N — 1. Of course, as Gourieroux et al. (2004) point
out, in this case the WAR(1) process which generates the covariance structures loses its interpretation
in terms of the VAR(1) processes. Nonetheless, in the context of a multivariate SV model, the latent
VAR(1) processes are meaningful and therefore, there is no reason why we should be interested in them.

Let us now specify how the returns y, depend on the covariance 3; generated by the WAR(1)
process. There are two ways that we can define this. One way is to set y,|X; ~ N (0,3;) as in the
model by Philipov & Glickman (2004), in which case the density of y, conditional on the covariance
structure is given by (3.12). A more interesting case arises if we allow the returns to depend on the
inverse 3; !, that is 4,/%; ~ N (0,%; ). Since the unconditional distribution of 3; is Wy (v, S) it
follows, using the relation between the Wishart and the inverse Wishart distributions (see Theorem
B.7) that ;! ~ ITWy (v+ N+ l,S_l). Therefore, since y,|%; ~ N (0, 2;1) and marginally ;' ~
Wy (I/ +N+1,8 71) , Theorem B.12 in Appendix B shows that the marginal distribution of y, is a
multivariate ¢-distribution, denoted tx (V —-N+1,1,0,8 *1) with density

(%)
N
T2

r'(3)

This latter result is interesting from a financial point of view. It is known that the distribution of

(SIS

_1¢,
p(y) = det (S)2 (1+ y;Sy,) 2D,

the returns y, has fatter tails than the normal distribution and that the kurtosis arising by accounting
for heteroscedasticity only cannot account for all of the excess kurtosis. This is the reason why most
researchers consider extending the standard SV model by allowing the observation errors to have fat-
tailed distributions. There have recently been attempts to construct stationary time series which account
for heteroscedasticity and have specified marginal distributions with heavy tails; see Pitt & Walker
(1999) and Pitt et al. (2002). Therefore, it is possible that using the above distribution for the returns

vector, we might be able to get a better fit to actual financial returns data.
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4 Conclusions and Future Work

In recent years multivariate SV models have attracted considerable attention both by researchers and
practitioners. The reason for this is that multivariate analysis seems more appropriate for modeling
returns data. In contrast to univariate models, which model the returns of each asset independently
of other assets’ returns, multivariate SV models take also account of the covariances and correlations
between returns. It is therefore believed that a multivariate analysis takes account of additional factors
that affect the dynamics of financial returns and in effect, predictions of future asset movements are
improved. Moreover, multivariate analysis considers the joint distribution of returns and thus, provides
a solution to practical financial problems such as portfolio optimization and VaR issues.

There exists a vast literature on multivariate ARCH models. Nonetheless, most of these models
suffer from the lack of parsimony, while the constraints placed on the parameters of these models, in
order to ensure that the covariance matrix is positive definite and symmetric are quite complicated.
Recent advances by Engle (2002), Ledoit et al. (2003) and Alexander (2001) in the ARCH literature
show more promise. On the other hand, SV models seem difficult to extend to a multivariate analogue
due to the fact that they are expressed in terms of log-volatilities. The most well known approach to
multivariate SV models is the one by Harvey et al. (1994), which restricts the assets returns to interact
through a constant correlation structure, a constraint which is not appealing. SV factor models by Pitt
& Shephard (1999) and Aguilar & West (2000) allow richer intuition and a large number of assets to
be jointly modelled (see Chib et al. (2005)), although open issues still exist regarding the specification
of the number of latent factors.

The Wishart distribution, which by definition satisfies the constraints of covariance matrices, looks
like a natural extension of the univariate SV case. Most importantly, the use of a Wishart process in
order to generate the covariance matrix allows both variances and covariances to evolve stochastically
over time. Moreover, a Wishart process allows the current volatility of an asset to depend both on its
past realized volatility as well as the correlations with other assets’ returns.

The estimation of these models seems challenging and computationally intensive, especially because
there is no obvious linearizing transformation and this rules out the use of some methods described in
Chapter 2. However, the extension of MCMC methods to a multivariate analogue, where it is vectors
and matrices that are sampled instead of scalar parameters, provides an obvious solution to the problem
of estimation. Moreover, as the inference via MCMC methods is based on finite sample distributions
there is no need to use asymptotic approximations and a natural solution to the smoothing problem is
offered.

It would be interesting to compare the multivariate models described in Chapter 3 in terms of fit to
the data as well as in terms of their ability to improve prediction on assets’ movements. An application
of these models to the problem of the optimal asset allocation or that of pricing complex financial
products would be of interest not only from a statistical point of view but from a practical aspect as

well.
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A Appendix: Filtering and smoothing algorithms

The state-space form of time series models has received considerable attention during the last years
(see Harvey (1989) and West & Harrison (1997)). State-space representations allow a better study and
understanding of the dynamics of a model. Let y; denote the observation from a (possibly multivariate)
time series at time £. In most time series models y; is usually related to a vector a;, called the state
vector, which is possibly unobserved and whose dimension, m say, is independent of the dimension, n,

of y;. The general form of a linear state-space model, is given by the following two equations

Y = Ztat—i—dt—i—Gtet, tzl,,T (Ala)
a1 = TtOét +c + Htgt- (Alb)

Equation (A.la) is known as the observation or measurement equation, while (A.1b) is called the
state transition equation. In (A.1) the parameters Z;, dy, Gy, T, ¢+ and Hy are referred to as the system
matrices and are assumed to be non-stochastic. In addition, &; is a vector of serially independent,
identically distributed disturbances with F (¢;) = 0 and Var (¢;) = I, the identity matrix. Finally, the
formulation of the state-space model (A.1) is completed by the assumption that the initial state vector
1 is independent of €; at all times ¢ and has unconditional mean and variance ay|g and Py|q respectively.

The Kalman filter is used primarily for prediction, filtering and smoothing. In what follows, we
assume that the state-space model in (A.1) is Gaussian and that G H; = 0, as is usually the case.
Moreover, we drop the terms d; and ¢; from the observation and transition equations for simplicity and
write GG, = ¥, and H H] = ;. The Kalman filter computes recursively the quantities ay =B (o |Wy)
and a; 1y = E (o 41|V¢) along with Py, = MSE (ay|¥;—1) and P,y = MSE (ay41|¥y), where ¥, =
(Y1,---,yr). Then, (Harvey (1989)) starting with a;jo and Py g, @y, az41; and their MSE’s are obtained

by running for t = 1,...,T, the recursions
vy = Yy~ Ziag—1r 5 Fi=ZPy 12+ % (A.2a)
Qifp = Qg1 + Pt|t_1Zt’F[1vt, (A.2b)
Py = Py1— Pyp1ZiF; 2Py, (A.20c)
appre = Tay, (A.2d)
Py = TiPyTy + Q. (A.2e)

The quantities v; and F; in (A.2a) denote respectively the one-step-ahead error in forecasting y; and
its MSE conditional on W;_;. The quantities a;; and a;;_; are optimal estimators of a; conditional
on the available information, in the sense that they are minimum mean square estimators. This last
property holds only if the state-space model is Gaussian. If the normality assumption is dropped the
quantities a;; and ay;—; are optimal only within the class of linear estimators. In other words, they
are the minimum mean square linear estimators of a; conditional on ¥; and ¥;_; (see also Brockwell
& Davis (1991)).

Equations (A.2b) and (A.2d) can be combined together to yield recursions that only compute the
one-step-ahead prediction estimates of «y41 given W;. Similarly, by taking together (A.2c) and (A.2e), a
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single set of recursions for the MSE is obtained, which goes directly from Fy;_; to P;;1;. The resulting

recursions, along with (A.2a), for t =1,...,7 — 1, are as follows:
apr1p = Ty + Ky, Ky =T Py Z{F] ! (A.3a)
Py = TPy Li+Q% , Li=T, — KiZ;. (A.3b)

Another application of the Kalman filter is the estimation of any unknown parameters 8 that might
be contained in the system matrices. Suppose that we have a set of T observations y = (y1,...,yr)
from the time series of interest. Because the T observations are not i.i.d. the likelihood needs to
be constructed by the one-step-ahead prediction densities. In particular, the joint probability density

function of the T" observations, can be written as

T
P yr) =pyrlUr1)-pel¥)p ) = [[p @l¥i).
t=1

The one-step-ahead prediction density p (y¢|¥;—1) is the density of a multivariate normal random variable

with mean Zja;;—; and covariance matrix Fy. Thus, the likelihood function is given by

1 _
L(y;0) = nT/2 H (et ) 73 © {—5 (v — Zoaye—r) F (e — Ztat|t1)} =
nT 1 e
I(y;0) = logl = - log (27) — B Zlog (det Fy) — 3 ZvéF;lvt. (A.4)
=1 =1

It should be noted that, under certain regularity conditions, the maximum likelihood estimators
are consistent and asymptotically normal (Harvey (1989)) and hence asymptotic standard errors of the
estimates can be reported. In addition, if the state-space model is non-Gaussian, the likelihood can still
be constructed in the same way using the minimum mean square linear estimators of the state vector.
However, the estimators § that maximize (A.4) are the quasi-maximum likelihood estimators of the
parameters. It can be shown that the QML estimators are also consistent and asymptotically normal
(Hamilton (1994)).

Another algorithm that can be applied to a state-space model is the fixed interval smoothing al-
gorithm. In mathematical terms, the fixed interval smoothing algorithm computes a;p = E (o |¥)
along with its MSE, Pyp, for all t =1,...,T — 1. These quantities are computed via a set of backward
recursions and use the quantities a;1|s, a;; and the MSE matrices Py, P, q);, which are obtained from
(A.2). In particular, to obtain a,; and Pyyp, we start with app and Ppp and we run backwards for
t=T-1,...,0

*
ayr = aye + P (aps1r — argape)

Py = PBy+P (Pyyr—Py) B, P =PT{Pqy.

During the last decade, the extensive use of the Gibbs sampler, has given rise to another smoothing

algorithm called the simulation smoother and is also tightly related to the Kalman filter. In contrast,

40



to the fixed interval smoother, which computes the conditional mean and variance of the state vector
at each time t in the sample, a simulation smoother is used for drawing samples from the density
p (o, ...,ar|Yr). There exist nowadays a number of smoothing algorithms in the literature proposed
by Fruhwirth-Schnatter (1994), Carter & Kohn (1994), Carter & Kohn (1996), deJong & Shephard
(1995) and Durbin & Koopman (2002).

The most popular simulation smoothing algorithm in the SV literature is probably that of deJong
& Shephard (1995). The main idea of the algorithm is to obtain a sample from p (Goeo, . . ., Grer|¥r),
by sampling 7, ~ p (Get| V7, Git1€141, ..., Grer). This allows the state vector to be reconstructed,
using the observation equation (A.la). In particular, the simulation smoother by deJong & Shephard
(1995) requires only the prediction equations (A.3) to be initially run and the quantities vy, Fy, K; and
L; to be stored. Then, starting with rr = 0 and Up = 0, the following backward recursions are run for
t=T,T—1,...,1.

Ci = S =% (F'"+KUK) S , ki ~N(0,C),
rie1 = Z{F7 '+ Lirg — (Z(F71 — LUK, S.C; 'k,
U1 = ZiF7'Zy+ LU L+ (ZF, " — LUK,) Gy 'Sy (B Zy — KJULLy)

The quantities 7, = X (F;lvt — Kt’rt) + K; are draws from the density p (Gtst|\I!T,/ﬁt+1, ... ,/ﬁT) and
hence, the vectors ay = yy — ¢; — Xt (Ft_lvt — K{rt) — K¢ represent draws from the filtered distribution

of the state vector.

B Appendix: Matrix Variate Distributions

In this section we present some definitions and fundamental results on matrix variate distributions.
References for this section are Gupta & Nagar (2000), Muirhead (1982), Press (1972) and Dawid (1981).
The following notation is used throughout. We denote by tr (A) the trace of a square matrix A, ® the
Kronecker product of two matrices and by vec the matrix operator which stacks the columns of a matrix
one under the other (see Harville (1997) for the properties of the operators). Moreover, a symmetric

positive definite symmetric matrix A is denoted A > 0.

Definition B.1 The (p x n) random matriz X € RP*™ is said to have a matriz variate normal distri-
bution with mean matriz (p x n) M € RP*™ and covariance matriz X @ ¥, where X is (p X p) and ¥ is
(n xn) with X, ¥ > 0, denoted X ~ Np,, (M, X ® V), if vec(X') ~ Npp (vec(M'), X @ V). The p.d.f.
of X is given by

1
V/(27m)" det (X)" det (V)P

exp {—%tr [E N X M) (X - M) } .

A special case of the matrix normal distribution arises when we have a sample x1, ..., &, of size n
from a p-dimensional multivariate normal distribution N, (g, %). The matrix X = (2, ..., x,), formed
by placing the vectors 1, ..., x, one next to the other, has a matrix variate normal distribution with

mean pl’, where 1 = (1,..., 1)' is the n-dimensional vector of ones, and variance X ® I,,, where I,, is the
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n-dimensional identity matrix, i.e. X ~ Ny, (u1’,X ® In). Next, we define the Wishart distribution.

Definition B.2 A (p x p) random, symmetric, positive definite matriz S is said to have a Wishart
distribution with (p X p) scale matriz ¥ > 0 and n > p degrees of freedom, denoted S ~ W), (n,X) if its
p.d.f. is given by
1 det (S)%("fpfl)
V2T, () det (2)2"

exp {—%tr (215)} : (B.1)

In the above definition, I'; (a) denotes the multivariate gamma function, which is defined for Re (a) >
(p—1)/2 by
T, (a) = / exp {—tr (A)} det (A)*3#+) g4
A>0

where the integral is over the space of (p X p) symmetric positive definite matrices A. Moreover, it can
be shown (see Muirhead (1982) and Gupta & Nagar (2000)) that for Re (a) > (p — 1) /2,

T, (a) = 712D f[r <a - % (i — 1)) .

=1

The density (B.1) of S ~ W), (n,X) exists only for n > p. If n < p, the distribution is singular (see
Muirhead (1982) p. 82) and S ~ W), (n, %) does not have a density function. Finally, it should be noted
that the Wishart distribution plays a very important role in multivariate analysis. It is the distribution
of the covariance matrix of a sample of size N from a multivariate N, (p, 3) distribution. More precisely,

the following result holds.

Theorem B.1 Let the p-dimensional vectors x1,. .., x, be a random sample of size n > p from a mul-
tivariate Ny, (0,X) distribution, where 3 > 0 is (p X p) and define the (p X n) matric X = (x1,...,Ty).
Define the (p x p) matriz S = XX'. Then S > 0 with probability one and S ~ W, (n,X).

Proof See Press (1972) p.101, or Gupta & Nagar (2000) p.88. m
In Theorem B.1, if n < p, the density of V = XX’ is singular and the distribution of V' is often

referred to as a pseudo-Wishart. In what follows, we give some properties of the Wishart distribution.

Theorem B.2 (Transformation of Wishart Matrices) Let the (p x p) random matriz S ~ W), (n, ¥)
and let A be a (q X p) constant matriz with ¢ < p. Define the (¢ x q) matric V. = AXA’, then
V ~ W, (n, AXA).

Proof See Press (1972) p.106. m
Corollary B.3 Let S ~ W, (n,X) and suppose that =1 = AA’. Then, ASA" ~ W, (n, I,).

Theorem B.4 (Additive Property) Let the (p x p) matrices S1,...,Sk be independent with S; ~
Wy (ni, X), i =1,...,k, for some (p x p) matriz ¥ > 0. Then Zle Si ~ Wy (Zle ng, E).

Proof See Gupta & Nagar (2000) p.94. m

42



Theorem B.5 (Moments of the Wishart distribution) Let S ~ W, (n,X) with (p X p) matriz
Y > 0. An let 55 and 045 (1 <14,j < p) be the elements of S and ¥ respectively. Then,

1. E(S) =nX.
2. Var(sij) =n (O'?j + O'Z'Z'O'jj).
3. Cov (sij,5ke) = n (k0 je + Tit0 ji;).-

4. B {det (8)} = 2 det (s 220 F 1)
Ty (57)

Proof See Press (1972) p.107 and Gupta & Nagar (2000) p.105. =

Two important distributions that are related to the Wishart distribution are the inverse Wishart
distribution and the non-central Wishart distribution. The former is the multivariate generalization
of the inverse Gamma distribution and is the distribution of the inverse of a random (p X p) matrix
S ~ W (n,X). It is usually used in Bayesian analysis as a conjugate prior for the covariance matrix of
a normal distribution. The non-central Wishart distribution plays an important role in applications in

econometrics and is the multivariate generalization of the non-central chi-squared distribution.

Definition B.3 A random (p x p) matrix V > 0 is said to have an inverse Wishart distribution with
m > 2p degrees of freedom and (p X p) scale matriz ¥ > 0, denoted V' ~ IW, (m,¥) if its pdf is given
by
1
1 det (W)2(m=P~1) { 1, }
expl —=tr (V7 "U) 5.
V2m=p=UpL,, (5 (m —p—1))  det (V)%m 2 ( )

Theorem B.6 (Moments of the inverse Wishart distribution) Let V ~ IW), (m,¥) with m and
U as in definition B.3 and let vi; and v;; (1 <i,j < p) denote the elements of V and W, respectively.
Then,

1

1. FE =

V) m—2p—2

N2
2. Var (vy) = 12!)” , m—2p>4.
(m—2p—2)"(m—2p—4)
m —2p — 2) Y + (m — 2p) P2,

3. Var (vij) = ( P—2)Visthy; F ( P) Vi m—2p>4andi#j.

(m—2p—1)(m—2p—2)*(m—2p—4)

2010k + (M — 2p — 2) (Vo + Vigy;)
(m—2p—1)(m—2p—2)° (m—2p—4)

4. Cov (vij,vpe) = m—2p>4andV i, j, k, L.

Proof See Press (1972) p. 112 and the references therein. m
From definition B.3 we can also derive the relationship between the inverse Wishart distribution and
the Wishart distribution.

Theorem B.7 IfS ~ W), (n,X) with (p X p) scale matriz ¥ >0 and n > p—1 degrees of freedom, then
STl =V ~1W, (n+p+1, S, Conwersely, if V ~ IW,, (m, ¥) with (p x p) scale matriz ¥ > 0 and
m > 2p degrees of freedom, then V=1 =5 ~ W, (m —-p—1, \11*1).
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Proof See Press (1972) p.110 and Gupta & Nagar (2000) p.111. m

The non-central Wishart distribution, though of quite complicated form, proves useful in various
applications. It is a generalized version of the Wishart distribution and arises as the distribution of the
random variable S = XX’ where X ~ N, ,, (M,X ® I,,). In particular, it is defined as follows.

Definition B.4 A (p X p) random matriz S > 0 is said to have a non-central Wishart distribution with

(p X p) scale matriz ¥ > 0, n > p degrees of freedom and non-centrality parameter matriz ©, denoted
S ~W,(n,%,0), if its p.d.f. is given by

1 det(s)znPD
V2T, (3)  det ()

exp {—%tr (£715) } exp {—%tr (@)} oF) (g %@zrls) . (B2

S

n

In (B.2) of1 (n/2;(1/4) ©X71S) is the hypergeometric function (Bessel function) of matrix argu-
ment. Its general form is given by (see Muirhead (1982) p.258)

o

oFy(a;4) =) % > C(’“a()A) : (B.3)
k=0 K K

where )" denotes summation over all partitions k = (k1,...,kp) of k (3 ; ki =k, k1 > -+ > ky, > 0),

C; (A) is called the zonal polynomial of the matrix A associated with partition . Generally speaking,

the role of the zonal polynomials, which are symmetric polynomials in the eigenvalues of a matrix A, is

to generalize the powers 2" of scalar = when « is replaced by a matrix A. The term (a), is called the

generalized hypergeometric coefficient corresponding to partition x and is given by

(a)ﬁzﬁﬁ(ajtj—l—i;l).

i=17=1

For more details on the hypergeometric functions of matrix argument and the zonal polynomials the
interested reader is referred to Muirhead (1982), Chapter 7. We should note that the hypergeometric
function (B.3) does not admit a closed form expression, however it can be shown (see Muirhead (1982))
that the series converges for all A. Muirhead (1982) gives a simple algorithm that recursively computes
the value of the hypergeometric function. More recently, Koev & Edelman (2004) devised a very accurate
and computationally efficient algorithm that computes the value of the hypergeometric function.
Finally, it should be noted that if in (B.2) © = 0, then the non-central Wishart distribution reduces
to the Wishart distribution. The following theorem, illustrates how the non-central Wishart distribution

arises from the matrix normal distribution.

Theorem B.8 Suppose that the random (p x n) matriz X ~ Ny, (M,X® I,), with n > p and (p X p)
covariance matriz ¥ > 0. Then, the random variable S = X X' has a non-central Wishart distribution

with n degrees of freedom, scale matriz ¥ > 0 and non-centrality parameter © = L~ 1MM’, i.e. S ~
W, (n, >, E_lMM’).

Proof See Gupta & Nagar (2000) p.114. =
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Theorem B.9 Suppose that the random (p x n) matric X ~ Ny, (M, X ® I,), with n > p and (p X p)
covariance matriz X > 0. Define the random variable S = XX'. Then, E(S) =nX+ MM'.

Proof See Gupta & Nagar (2000) p.119. m
Another matrix variate distribution that plays an important role in the matrix variate beta distri-
bution. It is the multivariate generalization of the univariate beta distribution. Its importance lies in

the fact that there is a conjugacy result between the Wishart and the matrix beta distribution.

Definition B.5 A (p x p) random matriz U > 0, such that (I, —U) > 0 also holds, is said to have a
matriz variate Beta distribution with parameters a,b > (p — 1) /2, denoted U ~ By, (a,b) if its p.d.f. is

given by
Iy (a+0)

Iy (a)Tp (b)
Clearly, if U ~ By (a,b), then the random variable (I, — U) ~ B, (b, a).

det (U)*"2® D det (1, — U)P 20+

The conjugacy relating the multivariate Beta to the Wishart distribution is presented in the following

theorem.

Theorem B.10 Let the (p x p) matrices S1 ~ Wy (n1,%) and Sa ~ W), (n2,X) be independent, with
ni,mg >p—1and X > 0. Let R be the upper-triangular (p X p) matriz with positive diagonal elements
such that S1 4+ Sy = R'R and define U to be the (p X p) symmetric matriz such that S; = R'UR. Then,

S1+S2 and U are independent and U ~ B, ("—21, %)

Proof See Muirhead (1982) p.109. m

Using theorem B.10 we can give an alternative, though less general, definition of the matrix variate
beta distribution. In particular, using the same notation as in theorem B.10, we may say that a random
matrix U is B, (n1/2,n9/2)-distributed, if it can be written as U = (R')™" Sy (R)™". In addition, it is
clear that if we define the random variable V = (R')™' Sy (R)™!, then V ~ B, (ng/2,n1/2) (see also
Dawid (1981) p.267 and Gupta & Nagar (2000) p.186).

Finally, another matrix variate distribution, which plays an important role in multivariate Bayesian
analysis, is the matrix variate t-distribution. In what follows, we give the definition and some properties
of this distribution.

Definition B.6 The random (p x m) matriz T € RP*™ is said to have a matriz variate t-distribution
with parameters, M € RP*™  (p x p) spread matrix ¥ > 0, (m x m) spread matriz ¥ > 0 and n > 0
degrees of freedom, denoted T, (n, M, X, W), if its p.d.f. is given by

n+m+p—1
r, (imgeet

) 1, _1 _ _ —L(n+m+p-1)
det (2)"2™ det (V) 2P det (I, + 2~ (T — M) ¥ (T — M)) "2 . (B.4)
—ﬂml’l“p <%p,1) ( p )

Theorem B.11 Let T ~ T}, (n, M, X, W) with n, M, ¥ and ¥ as in definition B.6, then

1. E(T)=M and
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1
2. Var (vec(T")) = —22 WU, n>2.

Proof See Gupta & Nagar (2000) p.135. m
The following theorem shows that the matrix variate t-distribution can be derived in a similar

manner to the univariate theory.

Theorem B.12 Let S ~ IW, (n+2p,X) for some n > 0 and (p X p) matric ¥ > 0. Suppose that
conditional on S, the (p x m) matrix T € RP*™ has distribution T|S ~ Npm, (0,5 @ U) for some
(m x m) matriz ¥ > 0. Then, marginally T ~ T}, (n,0,%, V).

Proof See Dawid (1981) p.266 and Gupta & Nagar (2000) p.134. m

Finally, it should be noted (see Gupta & Nagar (2000) and the references therein) that when m = 1,
T=tand M = p are (p x 1) and ¥ = ¢ is scalar, the matrix t-distribution reduces to a multivariate
t-distribution, denoted t, (n,, u,¥) and (B.4) becomes

) 1 1 1 —3(n+p)
=2 det (£) 297 2P |1+ miGe w7 (- p)
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